Солнечный луч
Шрифт:
Чтобы защитить фотопленку от действия видимых лучей, на объектив надевают специальные красные светофильтры. Для повышения чувствительности фотопленки к инфракрасным лучам в ее состав добавляют фотосенсибилизаторы, главным образом из группы цианиновых красителей, избирательно поглощающие лучи с длиной волны 0,8—1,2 мк (из ближней инфракрасной области) и ускоряющие почернение фотопластинки.
Инфракрасная фотография нашла применение и в медицине. На снимках, сделанных в инфракрасных лучах, хорошо видны поверхностно расположенные вены кожи: на фотографиях они кажутся темными и обнаруживаются даже в тех случаях, когда не видны глазом. При нарушениях кровообращения в брюшной полости, особенно в системе воротной вены (например, при закупорках ее
Инфракрасная фотография помогает врачу поставить правильный диагноз болезни. При заболеваниях сосудов нижних конечностей фотография в инфракрасных лучах позволяет контролировать полноту излечения тромбофлебитов, эффективность оперативного лечения варикозного расширения вен и т. п.
С помощью инфракрасных лучей можно обнаружить нагретые тела (ракеты, самолеты, корабли, танки и т.п.), а также определить направление и скорость их движения. Инфракрасный тепловой индикатор, соединенный с усилителем, позволяет обнаружить цель в темноте и на значительном расстоянии по тепловому излучению и осуществить точную наводку орудия или ракеты.
Приборы теплового самонаведения оказались незаменимыми при разработке противоракетных систем. Такие приборы, устанавливаемые в головке противоракеты, обнаруживают корпус ракеты, раскаленный трением о воздух до 2000—3000° С, на расстоянии нескольких километров и обеспечивают самонаведение на эту быстродвижущуюся мишень. Инфракрасные приборы успешно используются также в разведке, для сигнализации, предотвращения пожаров, охраны важных объектов, для навигации и т. п. Возможна организация связи на инфракрасных лучах. Создание инфракрасных телескопов имеет большое значение для астрономических наблюдений.
Спектры поглощения различных веществ в инфракрасных лучах настолько индивидуальны и характерны, что с их помощью можно установить химическое строение сложных органических соединений, заметить ничтожные изменения структуры белков, нуклеиновых кислот, не обнаруживаемые другими методами.
Источники инфракрасного излучения широко используются в медицине. Задолго до открытия этого вида лучей и создания специальных ламп при лечении различных заболеваний люди пользовались средствами, способствующими уменьшению потерь собственного тепла. Шерстяные повязки при болях в пояснице, заболеваниях почек, ревматизме, специальные укутывания ограничивают теплоотдачу, повышают температуру кожи, рефлекторно воздействуют на вегетативную нервную систему, ослабляют спазмы, усиливают кровообращение. Применение теплых компрессов, грелок, электрических нагревательных подушек — новый шаг в области лечения теплом. Увлажнение компресса усиливает эффект, так как теплопроводность влажного эпидермиса увеличивается во много раз.
Наиболее современным методом физиотерапии является применение специальных ламп накаливания, излучающих инфракрасную радиацию ближнего диапазона, которая наиболее глубоко проникает в тело. Дозированное облучение отдельных участков кожи этими лучами дает отличный результат при заболеваниях лимфатической системы (отек, воспалительные инфильтраты), суставов (артриты, инфекционные артриты, ревматические поражения), грудной клетки (плевриты), органов брюшной полости (энтериты), печени, желчного пузыря. Особенно эффективен этот метод лечения при невралгиях, невритах, миозитах, различных кожных заболеваниях (фурункулах, карбункулах, абсцессах, пиодермитах, экземах), мышечных контрактурах. Инфракрасные лучи способствуют заживлению ран, оказывают болеутоляющее, антисептическое, противовоспалительное, отвлекающее действие, стимулируют жизненные процессы.
Однако пользуясь источниками инфракрасных лучей, необходимо помнить, что они представляют собой серьезную опасность для глаз. Ближние лучи вызывают сильный нагрев хрусталика и стекловидного тела, а длительное воздействие лучей приводит к катаракте, параличу зрачка, отслойке сетчатки. В связи с этим люди, работающие на специальных производствах и в физиотерапевтических учреждениях, должны носить защитные очки.
Инфракрасные лучи, обладающие сравнительно высокой проникающей способностью, находят свою область применения и в лечении глазных болезней. Нередко к офтальмологу обращаются больные с помутнениями роговицы, с просьбой об операции. Но прежде чем приступать к пересадке роговицы, врач должен знать, каково состояние глаза, радужной оболочки, зрачка там, под бельмом, будет ли видеть глаз после операции. Установить это можно только с помощью инфракрасных лучей, проникающих через мутную роговицу столь же легко, как сквозь прозрачную, и отражающихся от хрусталика и радужки. Снимок в инфракрасных лучах дает врачу нужную информацию для решения вопроса о целесообразности операции. Еще большие перспективы имеет применение электронно-оптических преобразователей, позволяющих непосредственно видеть в инфракрасных лучах состояние глаза. Этот метод удобен не только при непрозрачности роговицы, но и при сильной светобоязни, вызванной болезнью (наблюдение в темноте неболезненно в этом случае) , облегчает отыскание инородных тел в глазу и исследование опухолей.
Инфракрасный обогрев дает отличные результаты в животноводстве, где в холодные периоды года бывают значительные потери молодняка. Особенно целесообразно сочетание ультрафиолетового и инфракрасного облучения молодняка, позволяющее не только обеспечить оптимальный температурный режим, но и восполнить недостаток лучей, способствующих синтезу витамина D, ускоряющих рост и развитие животных.
Итак, невидимый тепловой луч успешно работает на пользу человека.
Глава V.
Антагонизм излучений
В науке нередко бывает так: долгие годы ученые проходят мимо явления, которое буквально лежит на поверхности, не придавая ему серьезного значения. Единичные факты и наблюдения не привлекают внимания. И лишь когда развитие науки достигает более высокого уровня, явление, мимо которого равнодушно проходили долгие годы, вдруг привлекает всеобщее внимание и даже оказывается в фокусе научной мысли. Так случилось с фотореактивацией.
В 1949 г., работая в противоположных точках земного шара, в Советском Союзе и в Соединенных Штатах Америки, два ученых одновременно сделали одно и то же открытие. Сотрудник Одесского института глазных болезней им. В. П. Филатова И. Ф. Ковалев изучал действие ультрафиолетовых лучей на одноклеточные организмы — инфузории, из-за необычной формы тела получившие название туфелек. Лучи с длиной волны 2537 А задерживали деление инфузорий, а при более длительном облучении туфельки обычно погибали. Ученый заметил, что, когда облученных инфузорий не помещают, как обычно, в темный шкаф, а оставляют под рассеянным дневным светом, количество погибших инфузорий уменьшается в два-три раза. Американский микробиолог Кельнер получил такой же результат, работая с культурами кишечной палочки и лучистого грибка — актиномицета. Новое явление получило название фотореактивации.
Лучи против лучей
Итак, организм таинственным способом использует лучи видимого света для ослабления вредного действия ультрафиолетовых лучей. А между тем эти лучи мирно соседствуют в свете Солнца, и никто не предполагал, что они могут враждовать друг с другом.
Вновь открытое явление вызвало всеобщий интерес. Ведь и в прежние годы ученые сталкивались с антагонизмом излучений. Так, врачи-физиотерапевты наблюдали ослабление ультрафиолетовой эритемы, если участок кожи одновременно освещался видимым светом и инфракрасными лучами. В 1936 г. один немецкий врач даже воспроизвел это явление на своей собственной коже. Другие ученые обнаружили, что ультрафиолетовые лучи в интервале 2537—3020 А вызывают потемнение банановой кожуры, тогда как видимый ультрафиолетовый свет устраняет потемнение.