Совместимость. Как контролировать искусственный интеллект
Шрифт:
Первоначально нейроны были сгруппированы в нервные узлы, которые распределялись по всему организму и занимались координацией деятельности, скажем, питания и выделения, или согласованным сокращением мышечных клеток в определенной области тела. Изящные пульсации медузы – результат действия нервной сети. У медузы нет мозга.
Мозг возник позднее, вместе со сложными органами чувств, такими как глаза и уши. Через несколько сот миллионов лет после появления медузы с ее нервными узлами появились мы, люди, существа с большим головным мозгом – 100 млрд (1011) нейронов и квадриллион (1015) синапсов. Медленное в сравнении с электрическими цепями «время цикла» в несколько миллисекунд на каждое изменение состояния является быстрым по сравнению с большинством биологических процессов. Человеческий мозг часто описывается своими владельцами как «самый сложный объект во Вселенной», что, скорее всего, неверно, но хорошее оправдание тому факту, что мы до сих пор очень слабо представляем себе, как он работает. Мы очень много знаем о биохимии нейронов и синапсов в анатомических структурах мозга, но о нейронной реализации когнитивного уровня – обучении, познании, запоминании,
12
Краткое введение см. в статье: James Gorman, “Learning how little we know about the brain,” The New York Times, November 10, 2014. См. также: Tom Siegfried, “There’s a long way to go in understanding the brain,” ScienceNews, July 25, 2017. Специальный выпуск журнала Neuron в 2014 г. (vol. 94, pp. 933-1040) дает общее представление о множестве подходов к пониманию головного мозга.
В сфере сознания мы в действительности не знаем ничего, поэтому и я ничего не стану об этом говорить. Никто в сфере ИИ не работает над наделением машин сознанием, никто не знает, с чего следовало бы начинать такую работу, и никакое поведение не имеет в качестве предшествующего условия сознание. Допустим, я даю вам программу и спрашиваю: «Представляет ли она угрозу для человечества?» Вы анализируете код и видите – действительно, если его запустить, код составит и осуществит план, результатом которого станет уничтожение человеческой расы, как шахматная программа составила и осуществила бы план, в результате которого смогла бы обыграть любого человека. Предположим далее, что я говорю, что этот код, если его запустить, еще и создает своего рода машинное сознание. Изменит ли это ваш прогноз? Ни в малейшей степени. Это не имеет совершенно никакого значения [13] . Ваш прогноз относительно его действия останется точно таким же, потому что основывается на коде. Все голливудские сюжеты о том, как машины таинственным образом обретают сознание и проникаются ненавистью к людям, упускают из вида главное: важны способности, а не осознанность.
13
Наличие или отсутствие сознания – активного субъективного опыта – безусловно, принципиально важно для нашего отношения к машинам с точки зрения морали. Даже если бы мы знали достаточно, чтобы сконструировать сознающие машины или обнаружить тот факт, что нам это удалось, то столкнулись бы со множеством серьезных нравственных проблем, к решению большинства из которых не готовы.
У мозга есть важное когнитивное свойство, которое мы начинаем понимать, а именно – система вознаграждения. Это интересная сигнальная система, основанная на дофамине, которая связывает с поведением положительные и отрицательные стимулы. Ее действие открыл шведский нейрофизиолог Нильс-Аке Хилларп и его сотрудники в конце 1950-х гг. Она заставляет нас искать положительные стимулы, например сладкие фрукты, повышающие уровень дофамина; она же заставляет нас избегать отрицательные стимулы, скажем, опасность и боль, снижающие уровень дофамина. В каком-то смысле она действует так же, как механизм поиска глюкозы у бактерии E. coli, но намного сложнее. Система вознаграждения обладает «встроенными» методами обучения, так что наше поведение со временем становится более эффективным в плане получения вознаграждения. Кроме того, она делает возможным отложенное вознаграждение, благодаря чему мы учимся желать, например, деньги, обеспечивающие отдачу в будущем, а не сию минуту. Мы понимаем, как работает система вознаграждения в нашем мозге, в том числе потому, что она напоминает метод обучения с подкреплением, разработанный в сфере исследования ИИ, для которого у нас имеется основательная теория [14] .
14
Данная статья одной из первой установила четкую связь между алгоритмами обучения с подкреплением и нейрофизиологической регистрацией: Wolfram Schultz, Peter Dayan, and P. Read Montague, “A neural substrate of prediction and reward,” Science 275 (1997): 1593–99.
С эволюционной точки зрения мы можем считать систему вознаграждения мозга аналогом механизма поиска глюкозы у E. coli, способом повышения эволюционной приспособленности. Организмы, более эффективные в поиске вознаграждения – а именно: в нахождении вкусной пищи, избегании боли, занятии сексом и т. д., – с большей вероятностью передают свои гены потомству. Организму невероятно трудно решить, какое действие в долгосрочной перспективе скорее всего приведет к успешной передаче его генов, поэтому эволюция упростила нам эту задачу, снабдив встроенными указателями.
Однако эти указатели несовершенны. Некоторые способы получения вознаграждения снижают вероятность того, что наши гены будут переданы потомству. Например, принимать наркотики, пить огромное количество сладкой газировки и играть в видеоигры по 18 часов в день представляется контрпродуктивным с точки зрения продолжения рода. Более того, если бы вы получили прямой электрический доступ к своей системе вознаграждения, то, по всей вероятности, занимались бы самостимуляцией без конца, пока не умерли бы [15] .
15
Исследования внутричерепной стимуляции проводились в надежде найти средства лечения различных психических болезней. См., например: Robert Heath, “Electrical self-stimulation of the brain in man,” American Journal of Psychiatry 120 (1963): 571–77.
Рассогласование вознаграждающих сигналов и эволюционной необходимости влияет не только на отдельных индивидов. На маленьком острове у берегов Панамы живет карликовый трехпалый ленивец, как оказалось, страдающий зависимостью от близкого к валиуму вещества в своем рационе из мангровых листьев и находящийся на грани вымирания [16] . Таким образом, целый вид может исчезнуть, если найдет экологическую нишу, где сможет поощрять свою систему вознаграждения нездоровым образом.
16
Пример биологического вида, который может исчезнуть из-за зависимости: Bryson Voirin, “Biology and conservation of the pygmy sloth, Bradypus pygmaeus,” Journal of Mammalogy 96 (2015): 703–7.
Впрочем, за исключением подобных случайных неудач, обучение максимизации вознаграждения в естественной среде обычно повышает шансы особи передать свои гены и пережить изменения окружающей среды.
Обучение способствует не только выживанию и процветанию. Оно еще и ускоряет эволюцию. Каким образом? В конце концов, обучение не меняет нашу ДНК, а эволюция заключается в изменении ДНК с поколениями. Предположение, что между обучением и эволюцией существует связь, независимо друг от друга высказали в 1896 г. американский психолог Джеймс Болдуин [17] и британский этолог Конви Ллойд Морган [18] , но в те времена оно не стало общепринятым.
17
Появление понятия эффект Болдуина в эволюции обычно связывается со следующей статьей: James Baldwin, “A new factor in evolution,” American Naturalist 30 (1896): 441–51.
18
Основная идея эффекта Болдуина также описывается в работе: Conwy Lloyd Morgan, Habit and Instinct (Edward Arnold, 1896).
Эффект Болдуина, как его теперь называют, можно понять, если представить, что эволюция имеет выбор между созданием инстинктивного организма, любая реакция которого зафиксирована заранее, и адаптивного организма, который учится, как ему действовать. Теперь предположим, для примера, что оптимальный инстинктивный организм можно закодировать шестизначным числом, скажем, 472116, тогда как в случае адаптивного организма эволюция задает лишь 472, и организм сам должен заполнить пробел путем обучения на протяжении жизни. Очевидно, если эволюция должна позаботиться лишь о выборе трех первых цифр, ее работа значительно упрощается; адаптивный организм, получая через обучение последние три цифры, за одну жизнь делает то, на что эволюции потребовалось бы много поколений. Таким образом, способность учиться позволяет идти эволюционно коротким путем при условии, что адаптивный организм сумеет выжить в процессе обучения. Компьютерное моделирование свидетельствует о реальности эффекта Болдуина [19] . Влияние культуры лишь ускоряет процесс, потому что организованная цивилизация защищает индивидуальный организм, пока тот учится, и передает ему информацию, которую в ином случае индивиду пришлось бы добывать самостоятельно.
19
Современный анализ и компьютерная реализация, демонстрирующие эффект Болдуина: Geoffrey Hinton and Steven Nowlan, “How learning can guide evolution,” Complex Systems 1 (1987): 495–502.
Описание эффекта Болдуина является увлекательным, но неполным: оно предполагает, что обучение и эволюция обязательно работают в одном направлении, а именно, что направление обучения, вызванное любым сигналом внутренней обратной связи в организме, с точностью соответствует эволюционной приспособленности. Как мы видели на примере карликового трехпалого ленивца, это не так. В лучшем случае встроенные механизмы обучения дают лишь самое общее представление о долгосрочных последствиях любого конкретного действия для эволюционной приспособленности. Более того, возникает вопрос: как вообще возникла система вознаграждения? Ответ: разумеется, в процессе эволюции, усвоившей тот механизм обратной связи, который хоть сколько-нибудь соответствовал эволюционной приспособленности [20] . Очевидно, механизм обучения, который заставлял бы организм удаляться от потенциальных брачных партнеров и приближаться к хищникам, не просуществовал бы долго.
20
Дальнейшее раскрытие эффекта Болдуина в компьютерной модели, включающей эволюцию внутренней цепи сигнализации о вознаграждении: David Ackley and Michael Littman, “Interactions between learning and evolution,” in Artificial Life II, ed. Christopher Langton et al. (Addison-Wesley, 1991).
Таким образом, мы должны поблагодарить эффект Болдуина за то, что нейроны, с их способностью к обучению и решению задач, широко распространены в животном царстве. В то же время важно понимать, что эволюции на самом деле все равно, есть у вас мозг или интересные мысли. Эволюция считает вас лишь агентом, то есть кем-то, кто действует. Такие достославные характеристики интеллекта, как логическое рассуждение, целенаправленное планирование, мудрость, остроумие, воображение и креативность, могут быть принципиально важны для разумности агента, а могут и не быть. Идея ИИ невероятно захватывает в том числе потому, что предлагает возможный путь к пониманию этих механизмов. Может быть, нам удастся узнать, как эти характеристики интеллекта делают возможным разумное поведение, а также почему без них невозможно достичь по-настоящему разумного поведения.