Современные представления о механизмах зрительного внимания
Шрифт:
Еще один эксперимент, целью которого было изучение пространственных и временных стратегий расширения и сжатия зоны внимания, проводился в условиях фиксации неподвижной центральной точки. Он заключался в том, что подсказывающий стимул (серая рамка на светло-сером фоне) создавал ожидание появления стимула определенного размера. В 20 % случаев размер целевого стимула был больше или меньше подсказывающей рамки. Задачей испытуемого было определить ориентацию элементов изображения – направление вершины угла или же положение разъема кольца; в другом варианте эксперимента использовались разные сочетания пары цифр – 66, 69, 96 и 99. Между исчезновением рамки и появлением стимула иногда добавлялась задержка длительностью 200 мс. Во всех случаях результаты показали, что неоптимальная пространственная преднастройка внимания значительно увеличивает время, необходимое для идентификации стимула. Кроме того, в исследованном диапазоне отклонений (до 15°
Автор отдельно проанализировал два варианта подсказок: когда небольшого размера стимул появляется после предъявления крупной подсказывающей рамки и когда большой стимул появляется после подсказки меньшего размера. В первом случае сужение зоны внимания происходит с постоянной радиальной скоростью, составляющей порядка 50°/с. При существенном уменьшении размера целевого стимула скорость сужения области внимания замедляется примерно до 10–15°/с – по-видимому, это отражает возрастающую сложность фокусировки на наиболее узкой локальной области. При идентификации более простых стимулов отклонения во времени были немного меньше при тех же отношениях размеров области преднастройки и целевого стимула.
В другой группе случаев – при крупном стимуле, следующем за небольшой подсказывающей рамкой, время идентификации целевых стимулов также зависит от степени неоптимальности пространственной преднастройки зоны внимания, однако она имеет более сложную природу. Во-первых, длительность задержки в этом случае не превышала 50–60 мс, т. е. процесс дефокусировки внимания происходил явно быстрее, чем процесс фокусирования на меньшей цели. Автор предполагает, что фокусирование внимания может быть плавным процессом, в то время как дефокусирование – дискретным, одномоментным переключением. Эта стратегия представляется более эффективной, поскольку широкая зона внимания наверняка захватывает целевой стимул, а затем уже происходит его локализация и фокусировка, более затратная по времени. В то же время тренированность испытуемых никак не влияла на динамику фокусировки и дефокусировки внимания, а некоторое уменьшение времени реакции выбора объяснялось сокращением времени, требующегося на перцептивную обработку.
1.1.4. Типы зрительного внимания
Нервные центры, отвечающие за внимание, рассматриваются в основном в терминах большой распределенной нервной сети, относящейся к тем областям, которые активируются при выполнении задач, требующих концентрации внимания, а также к тем, которые при повреждениях приводят к появлению дефицита внимания (Posner et al., 2007; Mesulam, 1981). Posner, Petersen (1990) утверждают, что функции разных областей мозга следует рассматривать раздельно для областей, ассоциированных с источником внимания, и для областей, на которые внимание воздействует для активации специфических форм обработки информации. Например, внимание может оказывать влияние на первичные зрительные области, но источник этого воздействия может лежать в другом месте (Martinez et al., 1999; Posner, Gilbert, 1999). В то же время есть свидетельства того, что внимание может быть результатом конфликта между отдельными областями мозга (Desimone, Duncan, 1995), а некоторые исследования указывают на активацию нисходящей системы управления вниманием даже до появления фиксационных стимулов (Corbetta et al., 2008; Kastner et al., 1999).
Важную роль в развитии представлений о механизмах, реализующих высшие функции нервной системы, сыграла теория Д. Хэбба (D. Hebb, «The Organization of Behavior», 1949). Внимание как механизм, сложнее всего отделяемый от других когнитивных функций, оказалось хорошо объяснимым с точки зрения сетевой организации. В то время, когда Д. Хэбб писал монографию, о структуре и организации нервных центров, контролирующих основные сенсорные и моторные функции, было известно относительно мало. Это заставило его руководствоваться идеями, полученными при наблюдении и анализе психологических экспериментов, а также говорить скорее о концепциях, которые могут объяснять наблюдаемые феномены, чем о детальном описании возможных закономерностей функционирования мозга. Данные, которые были доступны Хэббу, в основном состояли из результатов исследования животных и поведенческих экспериментов с людьми. Пространственной точности ЭЭГ было недостаточно для связывания определенных функций с точным местоположением контролирующих их нервных центров в мозге, но достаточно для понимания того, что существует определенная, достаточно стабильная пространственная организация.
Во времена Хэбба идея сетевой организации была скорее расплывчатой словесной абстракцией, чем строгим определением. Однако несколько позже благодаря открытиям в области клеточной нейробиологии, а также развитию математического моделирования, появилась возможность проведения первых имитационных моделирующих экспериментов (Rumelhart, McClelland, 1986). Ранние версии этих моделей использовали упрощенные представления о нейронах, функционирующих по правилу «все или ничего», более современные модели основываются на детальной информации о нейроанатомии и биохимии клеток для построения сетей, имеющих сходство с реальным устройством мозга человека.
Обучение реализуется за счет изменения силы синаптической связи. Это дает возможность для модификации синапсов и показывает, как нейронные сети могут быть организованы под влиянием определенных внешних факторов. Также Хэбб предложил концепцию фазовых отношений, включенную в координацию нескольких нейронных ансамблей.
В развитие идей Хэбба Posner, Petersen (1990) предложили гипотезу, согласно которой источники внимания формируют специфическую систему анатомических областей, которые могут быть разделены на три относительно независимых друг от друга сети. Эти сети берут на себя функции предупреждения, ориентировки и контроля исполнения внимания (Posner, Fan, 2008). Обзор анатомических областей и нейромедиаторов, включенных в работу этих сетей, представлен в работе Posner, Rothbart (2008). Данные о расположении областей получены при помощи функциональной магнитно-резонансной томографии при выполнении заданий, активирующих эти подсистемы.
Предупреждение определяется как достижение и поддержание состояния высокой чувствительности к поступающим стимулам; ориентировка – как выбор релевантной информации из той, которая поступает к органам чувств; исполнительное внимание включает механизмы, ответственные за мониторинг и разрешение конфликтов между мыслями, чувствами и моторными ответами. Система предупреждения связывается с таламическими структурами, а также с фронтальными и париетальными зонами коры (Fan et al. 2009). Наиболее эффективный способ модулирования системы предупреждения – установка предупредительных сигналов за определенное, фиксированное время перед появлением целевого стимула. Влияние предупреждающих сигналов на уровень активации системы предупреждения считается зависящим от уровня активности норадреналина (Marrocco, Davidson 1998).
Ориентировка включает в себя направление внимания к источнику сенсорного сигнала. Это может происходить явно, когда глаза движутся вместе с движением фокуса внимания, или же скрыто, без движений глаз в направлении фокуса внимания. Ориентировочная система считается связанной с постериорными областями мозга, включая верхнюю височную долю и височно-теменной комплекс, а также поле 8 по Бродману (Corbetta, Shulman 2011). Ориентировочная система внимания может модулироваться с помощью подсказки, которая показывает наиболее вероятное место появления целевого стимула в пространстве (Posner, 1980). С помощью метода событийно-связанной магнитно-резонансной томографии Corbetta, Shulman смогли проследить, какие регионы мозга, независимо от положения целевых и подсказывающих стимулов, активировались при функционировании ориентировочного внимания. Верхняя париетальная область, наряду с латеральной интрапариетальной областью вовлечены в обеспечение глазодвигательной активности (Anderson et al., 2011). Когда целевой стимул появляется в неожиданной позиции и внимание должно сдвинуться в новое положение, активность наблюдается в височно-теменном комплексе (Corbetta, Shulman, 2011). Поражения в этом комплексе, а также верхней височной доли приводят нередко к трудности в ориентировании (Karnath et al., 2001).
Исполнительный контроль внимания часто изучается с помощью заданий, включающих в себя конфликт, например, с помощью различных вариаций теста Струпа. В этом тесте испытуемые должны называть цвет шрифта или чернил, которым написано слово (например, красный), и при этом игнорировать само слово, которое является названием другого цвета (например, слово «голубой») (Bush et al., 2000). Разрешение конфликта в задаче Струпа активирует срединные фронтальные зоны коры (в частности, переднюю поясную извилину), а также латеральную пре-фронтальную кору (Botvinick et al., 2001; Fan et al., 2009). Также есть свидетельства активации этой системы при решении задач, включающих конфликт между центральным целевым стимулом и окружающими его стимулами, которые могут соответствовать или противоречить его значению (Botvinick et al. 2001; Fan et al. 2009). Обнаружен вклад передней поясной извилины в улучшение связи между этой областью и представительством той сенсорной модальности, к которой привлечено внимание испытуемого (Crottaz-Herbette, Menon, 2006). Исходя из результатов экспериментов с фМРТ, Познер предположил, что система исполнительного контроля внимания играет существенную роль в регуляции позитивных и негативных эмоций, а также в широком круге когнитивных задач, лежащих в основе интеллектуальной деятельности (Duncan et al., 2000). Это указывает на важную роль внимания в регуляции активности сенсорных, когнитивных и эмоциональных систем.