Чтение онлайн

на главную

Жанры

Современный аквариум - техника и принадлежности
Шрифт:

Поселив амфиприонов в просторный аквариум, они стали определять смертельную концентрацию нитратов. Оказалось, что рыбы без видимого ущерба выдерживают концентрацию этого вещества, почти в 100 (!) раз превышающую указанную в аквариумной литературе предельно допустимую норму нитратов для аквариума с соленой водой. В чем же дело, почему такой разнобой в рекомендованных и экспериментальных данных? Если поразмыслить, ответ сравнительно прост. Дело не столько в самих нитратах, сколько в других веществах, которые накапливаются в аквариуме вместе с ними. Слово «сравнительно» написано здесь потому, что ни состав этих веществ, ни их свойства определить в любительских условиях невозможно, или, как сейчас говорят, почти невозможно. Более подробно об этом будет сказано ниже.

Колонка денитрификатора. Питательный раствор для фауны денитрификатора подается сверху дозирующим насосом. Циркуляция воды в контуре денитрификации осуществляется насосом, расположенным справа

Бороться

с нитратами можно путем регулярной подмены воды или использования денитрификационных фильтров. Известно, что водные растения прекрасно усваивают нитраты (и не только их!), используя эти вещества для построения своего тела. В результате концентрация нитратов заметно снижается. На этом основана работа так называемого водорослевого фильтра. Конструкции такого фильтра могут быть различными, но принцип один. Аквариумная вода протекает через своеобразную неглубокую кассету, в которой располагаются быстрорастущие водоросли, освещаемые яркими лампами. Излишки быстро нарастающей водорослевой массы периодически удаляются из кассеты фильтра. Совершенно необходимо, чтобы свет в водорослевом фильтре горел круглые сутки, так как при выключении освещения водоросли потребляют кислород и выделяют углекислый газ, который в больших количествах опасен для морских гидробионтов, равно как и недостаток кислорода.

Известны и другие способы денитрификации, например основанные на усвоении нитратов в воде другими микроорганизмами, осуществляющими эти процессы. В отличие от нитрификации, где важнейшую роль играет растворенный в воде кислород, процессы денитрификации происходят в среде, лишенной кислорода, или, говоря научным языком, анаэробной. Множество систем таких фильтров было разработано еще в послевоенные годы, а применяются они и поныне для очистки промышленных сточных вод. Основной принцип их работы состоит в том, что денитрифицирующие организмы преобразуют нитраты в газообразные компоненты, конечный продукт которых – газообразный азот, выделяемый в атмосферу. Очевидно, что гетеротрофные бактерии, осуществляющие процессы денитрификации, нуждаются в пище. Их питание может осуществляться различными способами – с помощью глюкозы, сахара, метилового и этилового спиртов. Денитрификатор с применением этилового спирта получил общепринятое в мире название «водочный фильтр».

Мода на аквариумы мини-рифы, в которых очень важно обеспечить высокое качество воды с низким уровнем нитратов, подтолкнула развитие аквариумной техники в части появления денитрификаторов новых систем.

Одним из успешных типов таких устройств, получивших свое развитие в последние 10–15 лет, стал так называемый автотрофный серный денитрификатор (ASD – Autotrophic Sulfur Denitrification). Суть его работы заключается в восстановлении нитратов до газообразного азота с помощью серы, являющейся питательной средой для бактерий Thiobacillus denitrificans. Само по себе изучение этих бактерий относится к началу 1950-х гг., но применение их природных способностей в аквариумной технике началось лишь сорок лет спустя. Первые эксперименты были проведены Марком Лангу (Marc Langouet) во Франции. Серный денитрификатор устроен исключительно просто. Он представляет собой резервуар, заполненный серой в виде гранул размерами от 1,5 до 5 мм. Движение воды снизу вверх обеспечивает анаэробный режим в нижней части устройства, а также транспортировку и выход мельчайших пузырьков газообразного азота, образовавшихся в результате реакции, в атмосферу. Для этого верхняя часть серного реактора должна быть открытой. Рекомендуемая масса серы в реакторе должна составлять приблизительно 1 % от веса воды в аквариуме. Например, для аквариума объемом 400 л в серный реактор денитрификатора следует поместить 4 кг серных гранул. Учитывая, что в результате работы серного реактора рН обработанной воды снижается до уровня 6–6,5 (из-за образования серной кислоты), что недопустимо для морской воды, на его выходе следует установить нейтрализующее устройство, заполненное мрамором, известняком или доломитом примерно такого же объема, что и сера. Для этого можно использовать стандартный кальциевый реактор, применяемый в сочетании с углекислым газом и служащий для пополнения баланса кальция в морской воде. После протекания обработанной воды через кальциевый реактор ее можно смело возвращать в аквариум.

Колонка денитрификатора, заполненная шариками из серы, позволяет реализовать систему автотрофной серной денитрификации (ASD)

Различные типы аквариумных субстратов, применяемых в системах пресноводного аквариума с живыми растениями

Запуск серного денитрификатора, равно как и биофильтра, достаточно сложен. Поначалу движение воды в этом устройстве следует свести к минимуму, чтобы гарантировать анаэробные условия в нижней части серного реактора. При температуре 26 °C и скорости течения жидкости 1 капля в секунду это занимает в среднем 2–3 дня. Активность работы бактерий можно зафиксировать повышением уровня нитритов на выходе серного реактора. Измерения следует проводить регулярно, чтобы аналогично запуску биофильтра убедиться в прохождении пика нитритов, что обычно происходит на 3-4-й день. Затем скорость потока воды через серный реактор увеличивают в течение 10–15 дней. Параллельно с этим контролируют изменение уровня нитратов в воде. Слишком большой поток воды через фильтр приводит к повышению уровня нитритов в вытекающей воде, а слишком малый – к образованию сероводорода, что просто определить по характерному запаху над поверхностью серного реактора. Таким образом, оптимальный режим работы автотрофного серного денитрификатора подбирается регулированием скорости потока обрабатываемой воды. Регулировать

же этот поток с помощью крана очень легко. Для ориентировки следует принять в расчет следующие цифры: для реактора с количеством серы 4 кг скорость потока будет приблизительно 4 л/ч, то есть порядка 100 л/сут. В зависимости от конструктивных параметров системы фильтрации воду из денитрификатора можно направлять непосредственно в аквариум или, например, в поддон.

Устройство двойного дна. Для улучшения качества фильтрации в системе Жубера в самой нижней части субстрата желательно между слоями гравия и синтетического волокна расположить слой серных шариков

Существует несколько вариантов компоновки автотрофного серного денитрификатора в общей системе фильтрации. Успешную апробацию прошло устройство, последовательно включающее 3 камеры, где обрабатываемая вода сначала проходит через сорбент, забирающий из воды фосфаты, а затем через серный и кальциевый реакторы. После кальциевого реактора очищенная вода направляется обратно в аквариум. В последнее время появились данные о том, что применение серы в самом нижнем анаэробном слое комбинированного фильтра по системе Жубера значительно увеличивает его денитрификационный потенциал.

Адсорбционно-химическая очистка

Применение различных сорбентов, а также адсорбция продуктов метаболизма морских животных и растений на поверхностях раздела вода– воздух в виде пены, собираемой пузырьками воздуха, а также самой поверхностью воды аквариума, через которую осуществляется газообмен, называется адсорбционно-химической очисткой воды, или фильтрацией.

Активированный уголь и другие сорбенты

В порах активированного угля и некоторых других природных веществ и минералов, а также появившихся в последнее время синтетических полимерных сорбентов происходит поглощение других химических соединений различного происхождения – мелкодисперсных твердых веществ, жидкостей и газов.

Для удаления нежелательных органических загрязнений аквариумисты обычно поступают по очень упрощенной схеме – ставят в аквариум адсорбционный, или, иначе говоря, химический, фильтр с активированным углем или другими веществами, которые называют сорбентами (натуральными или синтетическими). При этом они считают, что, периодически меняя наполнитель такого фильтра, они решают все проблемы с попутной органикой. К сожалению, это не всегда и не совсем так, но об этом разговор особый. Самое важное при использовании сорбентов – правильно определить регламент их замены. В лучшем случае они просто перестают выполнять свои функции, так как сорбирующие поверхности не могут больше принимать загрязняющие вещества, а в худшем случае происходит спонтанная десорбция – внезапный выброс всего накопленного в воду аквариума. Несомненно одно – избежать стресса у обитателей аквариума не удастся. Особо чувствительные гидробионты испытывают стресс даже при малейшем сбое, поэтому нередко аквариумисты ставят два угольных контактора, которые меняют по очереди, чтобы не было резкого изменения в концентрации из-за лучшей сорбирующей способности свежего действующего вещества. В качестве наполнителя угольных контакторов можно с успехом использовать отечественный березовый уголь марки БАУ. Перед употреблением уголь желательно промыть в чистой воде от угольной пыли, а затем еще и прокипятить, особенно если после его применения в аквариуме было отмечено снижение показателя рН.

Устройство для умягчения воды заполняется ионообменными смолами, через которые осуществляется циркуляция аквариумной воды. Ионообменную смолу необходимо периодически регенерировать. Устройство, расположенное справа, предназначено для аквариумов большего размера

Для умягчения воды в качестве наполнителей химических фильтров нередко используют ионообменные смолы. Свойства ионообменных смол позволяют им замещать положительно заряженные ионы в растворах (катионы) на ионы водорода, а отрицательно заряженные ионы (анионы) – на ионы гидроксила. В результате в растворе остается одна вода, а катионы и анионы адсорбируются ионообменными смолами. Для приведения ионообменных смол в рабочее состояние их «заряжают» с помощью сильных кислот (обычно соляной) и щелочей. По мере работы емкость ионообменных смол и, соответственно, объем обрабатываемой воды уменьшаются, и их приходится регенерировать вновь и вновь. Следует помнить, что количество циклов регенерации смолы практически не ограничено и определяется главным образом сроком службы смолы как вещества, что в итоге определяется условиями ее использования и хранения. Ионообменные смолы, замещающие катионы, называются катионитами, а анионы – анионитами. Обычно их размещают в отдельных устройствах в форме цилиндров, называемых ионообменными колонками. Для полного обессоливания и, соответственно, умягчения вода последовательно проходит через обе ионообменные колонки. Чаще всего в практике аквариумиста ионообменные колонки используют в системах водоподготовки.

Пеноотделители

Для того чтобы экскременты и другие выделения рыб в виде слизи и высокомолекулярных соединений не попадали в механический фильтр, где обычно происходит их первичное разложение, вызывающее отравление всего аквариума органическими веществами, используют так называемые скиммер-камеры, или пеноотделители. В этих устройствах, представляющих собой высокие цилиндры, заполненные водой, поднимаются мельчайшие пузырьки воздуха, нередко с добавлением озона. Эти пузырьки адсорбируют на своей поверхности частички органических взвесей, слизи, высокомолекулярные компоненты выделений и в виде пены выводят их за пределы аквариума в отдельные емкости – пеносборники. Периодически собранную пену выливают, а пеносборники, предварительно сполоснув, возвращают на место.

Поделиться:
Популярные книги

Путь Шедара

Кораблев Родион
4. Другая сторона
Фантастика:
боевая фантастика
6.83
рейтинг книги
Путь Шедара

Кодекс Охотника. Книга XXI

Винокуров Юрий
21. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XXI

Драконий подарок

Суббота Светлана
1. Королевская академия Драко
Любовные романы:
любовно-фантастические романы
7.30
рейтинг книги
Драконий подарок

Неудержимый. Книга XVIII

Боярский Андрей
18. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XVIII

Сумеречный стрелок

Карелин Сергей Витальевич
1. Сумеречный стрелок
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный стрелок

Уязвимость

Рам Янка
Любовные романы:
современные любовные романы
7.44
рейтинг книги
Уязвимость

Путь (2 книга - 6 книга)

Игнатов Михаил Павлович
Путь
Фантастика:
фэнтези
6.40
рейтинг книги
Путь (2 книга - 6 книга)

Я – Орк. Том 5

Лисицин Евгений
5. Я — Орк
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Я – Орк. Том 5

Совок

Агарев Вадим
1. Совок
Фантастика:
фэнтези
детективная фантастика
попаданцы
8.13
рейтинг книги
Совок

Авиатор: назад в СССР

Дорин Михаил
1. Авиатор
Фантастика:
попаданцы
альтернативная история
5.25
рейтинг книги
Авиатор: назад в СССР

На границе империй. Том 9. Часть 2

INDIGO
15. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 2

Доктора вызывали? или Трудовые будни попаданки

Марей Соня
Фантастика:
юмористическая фантастика
попаданцы
5.00
рейтинг книги
Доктора вызывали? или Трудовые будни попаданки

Совершенный: пробуждение

Vector
1. Совершенный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Совершенный: пробуждение

Энфис 4

Кронос Александр
4. Эрра
Фантастика:
городское фэнтези
рпг
аниме
5.00
рейтинг книги
Энфис 4