Среднего более не дано. Как выйти из эпохи великой стагнации
Шрифт:
Цитирование данного малопонятного описания никоим образом не призвано принизить достоинство теории. Наоборот, им подчеркивается, каким образом некоторые передовые подходы способны помочь нам понять теории, которые иначе были бы вне понимания большинством из нас, практически — всеми нами. Не будь высшей математики, не была бы сформулирована и теория струн.
В наши дни исследователи различных областей науки составляют формулы, которые понятны очень небольшому числу людей. И трудно назвать «скачком» тот момент — который, возможно, уже наступил,— когда новые формулы не понимает уже никто. Разумеется, существуют разные степени понимания, поэтому несложно представить, что в будущем ведущие ученые будут понимать все меньшие доли получаемых ими результатов. В этом нет ничего удивительного, принимая во внимание тот факт, что результаты эти — следствие
В целом трудности понимания общей картины нашли отражение в возрастной структуре научных достижений. Как правило, с возрастом ученые отличаются меньшей самоуверенностью, способны выдвигать меньшее число инновационных решений и предпочитают придерживаться уже устоявшихся концепций. Эйнштейн как-то заметил: «Тот, кто не сделал великих открытий до тридцати лет, не сделает их уже никогда». Это более не является истиной (если вообще когда-либо ею было), однако кое в чем Эйнштейн прав. Ученые и исследователи отличаются свежестью и революционностью взглядов именно в молодости. С возрастом мы приобретаем мудрость, однако теряем долю концептуальной остроты и желание низвергнуть устоявшиеся понятия. В итоге мы получаем ученых и исследователей, не отличающихся революционностью подходов, за исключением, повторюсь, Интернета и связанных с ним технологий — областей знаний, осваиваемых молодыми специалистами в сжатые сроки. И все же на долю исследователей пожилого и среднего возраста приходится большая часть инновационных решений, поскольку именно они владеют объемами знаний, достаточными для понимания общей картины.
Исследователями Брюсом Уайнбергом и Бенджамином Джоунсом был проанализирован возрастной состав лауреатов 525 Нобелевских премий по физике, химии и медицине, присужденных с 1900 по 2008 г. Выявленная ими тенденция указывает на то, что по прошествии десятилетий средний возраст ученых во всех указанных областях, выдвигающих революционные решения, достойные получения этой награды, увеличивается.
В 1905 г. средний возраст физика, удостоившегося Нобелевской премии, составлял 37 лет, увеличившись к 1985 г. до 50 лет. В тот же период возраст удостоившихся награды химиков увеличился с 36 до 46 лет, а специалистов в области медицины — с 38 до 45. До 1905 г. 20% лауреатов из указанных областей были удостоены награды за открытия, сделанные ими до тридцатилетнего возраста, но к 2000 г. таких юных гениев почти не осталось. Нравится нам это или нет, но революционные научные решения стали уделом ученых среднего возраста.
Подобная тенденция может оказаться проблематичной для таких областей, как математика, которая в значительной степени полагается именно на молодые таланты. Доступность знаний означает, что сегодня гораздо легче обладать объемом знаний, позволяющим причислить вас к молодому дарованию, однако быть молодым дарованием, способным одарить мир революционными решениями, стало гораздо сложнее. Вполне возможно, что, когда к тридцати годам вы изучите все из области вашей специализации, ваше мышление растеряет часть своей остроты.
Нам следует смириться с данными тенденциями. Возможно, мы не можем повернуть их вспять и, наверное, нам и не стоит пытаться это сделать. Как я уже сказал, в пользу существующего положения вещей и его вероятного сохранения в будущем говорят многие факторы, в том числе — упрощенность обмена научной информацией и научного сотрудничества, возросшая доступность научных материалов, растущие компьютерные мощности, распространенность умных машин и возрастающее число людей, у которых появился шанс посвятить себя науке, включая жителей Китая и Индии. В абсолютном выражении польза от подобных тенденций способна сгладить проблемы, являющиеся следствием возрастающей специализации. В любом случае нам уже невозможно вернуться в эпоху Евклида, когда целая отрасль науки могла быть создана или трансформирована одной лишь книгой или собранием лекционных записей. В целом это — история прогресса, но это не будет прогрессом в традиционном виде, так как его продвижение по большей части окажется за пределами привычных нам форм понимания.
Одна
Наукотворчество машин
Б'oльшая часть сегодняшних научных исследований выглядит следующим образом: «человек направляет компьютер для того, чтобы он помогал человеку в проведении исследований». Однако мы продвигаемся в направлении, где «человек дает компьютеру указания проводить свои собственные исследования», и «человек пытается понять результаты проведенных компьютером исследований». Значимость компьютера в качестве центральной составляющей самой исследовательской работы и даже ее планирования будет возрастать, а человеку будет уготована скорее роль прислуги, чем двигателя прогресса.
Одной из умных машин может быть предложена новая теории космологии, и, возможно, никто из людей не сможет понять или ясным образом выразить ее. Может быть, эта теория будет касаться не поддающихся умственному представлению измерений космоса или парадоксального понимания времени. Машина заверит нас, что выдвинутая ею теория позволит делать качественные прогнозы, и за неимением лучшего нам придется использовать одну из гениальных машин для проверки прогнозов, предлагаемых другой. При этом, будучи людьми, мы не сможем полностью понимать значение теории, и даже лучшие ученые умы смогут понимать теории и прогнозы машин лишь частично. Это будет все равно что попытаться объяснить периодическую систему химических элементов пятилетнему ребенку. Вероятно, это и можно будет объяснить человеческому уму, но это вряд ли будет легко понятным и логическим пониманием происходящего.
Стимулы к движению в направлении более качественной науки будут лишь способствовать этому возрастающему непониманию с нашей стороны. Значимость машинного разума для выполнения задач и расчетов, в которых люди уже достаточно хорошо разбираются, невелика. Машины в состоянии выполнять подобные задачи быстрее, однако гораздо большая польза заключается в использовании машин в выполнении задач, которые люди не в состоянии выполнить или понять вовсе. Здесь вам и разделение труда, и взаимодополняемость, способные вывести научные результаты за рамки всеобщего понимания, как только гениальные машины вступят в игру.
Соответствующая степень непонимания будет зависеть от конкретной области науки. В некоторых дисциплинах, таких как космология, делаются попытки (среди прочего) создать широкомасштабные и всеобъемлющие теории. Существует вероятность того, что ни один человек не сможет понять лучшую из готовых к применению масштабных теорий вследствие ее сложности или глубины либо вследствие того, что ее категории слишком выходят за рамки нашего повседневного существования.
Б'oльшая часть традиционной науки в эту схему не вписывается — например, если речь идет о сборе и уточнении данных по пищеварительной системе отдельного вида морской звезды или изучении движения вулканической лавы. В этом случае ни человек, ни гениальная машина, скорее всего, не смогут предложить сколько-нибудь значимую новую теорию. Вместо выработки новой теории, речь будет идти о сборе дополнительных данных, новых проверках гипотез и постепенном уточнении и совершенствовании существующих знаний. Знания будут становиться все более специализированными. Одному специалисту будет все труднее владеть всей полнотой информации по пищеварительной системе морских звезд, хотя благодаря Интернету найти любую требующуюся информацию по данному вопросу будет проще. Неспециалистам же будет доступно множество разрозненных сведений по той или иной проблеме, но меньше — понимания ее общей картины.