Чтение онлайн

на главную

Жанры

Шрифт:

Когда один вектор является функцией другого вектора, отношение первого ко второму является вообще кватернионом, представляющим собой функцию второго вектора.

Когда второй вектор изменяется лишь по величине, а первый всё время ему пропорционален и остаётся постоянным по направлению, мы имеем важный случай линейной функции. Первый вектор тогда называется линейной векторной функцией второго.

Если , , — декартовы компоненты первого вектора, а a, b, c — компоненты второго, то

=r

1

a+q

3

b+p

2

c,

=p

3

a+r

2

b+q

1

c,

=q

2

a+p

1

b+r

3

c,

где

коэффициенты p, q, r постоянны. Когда все p равны соответствующим q, функция называется самосопряжённой. Она может быть тогда представлена геометрически как соотношение между радиусом-вектором из центра эллипсоида и перпендикуляром на касательную плоскость.

Можно заметить, что даже здесь, где мы, казалось бы, достигли чистых сфер науки, не запятнанных физическими приложениями, один из векторов необходимо есть линия, тогда как другой определяется как нормаль к плоскости, как и во всех других, уже упомянутых парах векторов3*.

Другое различие между физическими векторами основано на ином принципе и разделяет их на векторы, определяемые по отношению к вращению. На замечательные аналогии между этими двумя классами векторов указал Пуансо в своём труде о движении твёрдого тела. Но наиболее замечательная иллюстрация этих аналогий основана на двух различных точках зрения, с которых можно рассматривать связь между электричеством и магнетизмом.

Гельмгольц показал нам в своей знаменитой работе о вихревом движении, как провести аналогию между электромагнитными и гидро-кинетическими явлениями, в которых магнитная сила представлена скоростью жидкости, родом поступательного движения, а электрический ток представлен вращением элементов жидкости. Он не предлагает этого в качестве объяснения электромагнетизма, так как хотя эта аналогия и совершенна по форме, но динамика обеих систем чрезвычайно различна.

Согласно Амперу и его исследованиям, электрические токи рассматриваются, однако, как род поступательного движения, а магнитная сила — как сила, зависящая от вращения. Я вынужден согласиться с этой точкой зрения, так как электрический ток связывается с электролизом и другими явлениями, в которых, несомненно, мы имеем поступательное движение, тогда как магнетизм связан с вращением плоскости поляризации света, которое, как показал Томсон, заключает в себе действительное вращательное движение.

Гамильтоновский оператор , применённый к любой векторной функции, превращает её из поступательного движения во вращение или из вращения в поступательное движение, в зависимости от рода вектора, к которому он применяется.

В заключение я предложу на рассмотрение некоторые математические термины, служащие для обозначения результатов гамильтоновского оператора . Я буду очень признателен тому, кто даст мне какой-нибудь совет по этому вопросу, так как я чувствую, что моя способность к установлению наименований очень слаба и что она может с успехом осуществляться лишь в сотрудничестве с другими.

есть операция

i

x

+j

y

+k

z

где i, j, k — единичные векторы, параллельные соответственно x, y, z. Результатом двукратного повторения на любом объекте этой операции является хорошо известный оператор (Лапласа):

^2=

^2

x^2

+

^2

y^2

+

^2

z^2

.

Нахождением квадратного корня этой операции мы обязаны Гамильтону; но большинство данных здесь приложений и развитие теории этого оператора дано профессором Тэтом и напечатано в ряде статей, из которых первая помещена в «Proceedings of the Royal Society of Edinburgh» от 28 апреля 1862 г., а наиболее полная «О теоремах Грина и других, связанных с ними» — в «Transactions of the Royal Society of Edinburgh», 1869—1870 г.

Прежде всего я предлагаю назвать результату ^2 (оператор Лапласа) с обратным знаком концентрацией величины, к которой она применена.

Действительно, если Q есть скалярная либо векторная величина, являющаяся функцией положения точки, и если мы возьмём интеграл Q по объёму шара радиуса r, то, разделив его на объём шара, мы получим Q, среднее значение Q внутри шара. Если Q0 есть значение Q в центре шара, то при малом r

Q

0

Q

=Cr

2

2

Q,

т.е. значение Q в центре шара превышает среднее значение Q внутри шара на величину, зависящую от радиуса и от ^2Q. Поэтому раз ^2Q означает избыток значения Q в центре над его средней величиной внутри шара, то я назову его концентрацией Q.

Если Q — величина скалярная, то и концентрация её — скаляр. Так, если Q — электрический потенциал, то ^2Q есть плотность вещества, создающего потенциал.

Если Q — векторная величина, то Q0 и Q — векторы и ^2Q — также вектор, выражающий собой избыток равномерно распределённой силы Q0 приложенной ко всему веществу шара, над результирующей действительной силы Q, действующей на все части шара.

Рассмотрим затем гамильтоновский оператор . Применим его сначала к скалярной функции P. Величина P есть вектор, указывающий направление, в котором P наиболее быстро уменьшается, и измеряющий степень этого уменьшения. Я решаюсь, с большой осторожностью, называть это падением (slope) P. Ламе называет величину выражения P «первым дифференциальным параметром» P, но направлением вектора P он не интересуется. Нам нужен термин, имеющий векторный характер и который, одновременно указывая направление и величину, в то же время не употреблялся бы ещё в другом математическом смысле. Я взял на себя смелость, распространить обычный смысл слова падение (slope), взятого из топографии, где по отношению к трёхмерному пространству употребляются лишь две независимые переменные.

Если изображает векторную функцию, то а может одновременно заключать скалярную и векторную части, которые могут быть написаны как S и V.

Я предлагаю назвать скалярную часть конвергенцией4 потому, что если описать вокруг любой точки замкнутую поверхность, то поверхностный интеграл , выражающий действие вектора , рассматриваемого как втекание потока через поверхность, равен объёмному интегралу S заключённому в этой замкнутой поверхности пространству. Поэтому я считаю, что конвергенция векторной функции является очень подходящим названием для действия этой векторной функции, заключающегося в продвижении представляемого им объекта внутрь, к одной точке.

Поделиться:
Популярные книги

Царь поневоле. Том 1

Распопов Дмитрий Викторович
4. Фараон
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Царь поневоле. Том 1

Измена. Не прощу

Леманн Анастасия
1. Измены
Любовные романы:
современные любовные романы
4.00
рейтинг книги
Измена. Не прощу

Мастер Разума IV

Кронос Александр
4. Мастер Разума
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер Разума IV

Король Масок. Том 1

Романовский Борис Владимирович
1. Апофеоз Короля
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Король Масок. Том 1

Мерзавец

Шагаева Наталья
3. Братья Майоровы
Любовные романы:
современные любовные романы
эро литература
короткие любовные романы
5.00
рейтинг книги
Мерзавец

Я — Легион

Злобин Михаил
3. О чем молчат могилы
Фантастика:
боевая фантастика
7.88
рейтинг книги
Я — Легион

Не грози Дубровскому! Том II

Панарин Антон
2. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том II

Девятый

Каменистый Артем
1. Девятый
Фантастика:
боевая фантастика
попаданцы
9.15
рейтинг книги
Девятый

Матабар. II

Клеванский Кирилл Сергеевич
2. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар. II

Ты нас предал

Безрукова Елена
1. Измены. Кантемировы
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Ты нас предал

Девочка по имени Зачем

Юнина Наталья
Любовные романы:
современные любовные романы
5.73
рейтинг книги
Девочка по имени Зачем

Не грози Дубровскому! Том V

Панарин Антон
5. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том V

Проданная Истинная. Месть по-драконьи

Белова Екатерина
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Проданная Истинная. Месть по-драконьи

Генерал Империи

Ланцов Михаил Алексеевич
4. Безумный Макс
Фантастика:
альтернативная история
5.62
рейтинг книги
Генерал Империи