Чтение онлайн

на главную

Жанры

Стоунхендж и пирамиды Египта
Шрифт:

Если бы был осуществлен некий сознательный план, следовало бы ожидать большого числа углов в 60° и 90°. Я предполагал, что такой план должен был быть основан на какой-то системе чистой геометрии, ибо прямой угол (в 90°) очень легко построить с помощью нескольких колышков и отрезков шпагата. Деля угол пополам при помощи тех же методов, можно получить дополнительные углы в 45°, 22,5° и т. д. Схожим образом можно построить углы в 60°, для чего нужны лишь три одинаковых отрезка веревки. Углы в 50° и 40° построить сложнее с помощью тех же геометрических методов. В таблице 3 каждый из них появляется три раза, следовательно, существовал какой-то способ

их построения.

Найденный позже ответ свидетельствовал как о необычной простоте, так и о математической гениальности системы.

Окончательное решение

Во время анализа свойств прямоугольного треугольника с углами в 40° и 50° я неожиданно наткнулся на решение. Я обнаружил, что в треугольнике с такими углами основание и перпендикулярная сторона измеряются соответственно пятью и шестью единицами.

Иными словами, налицо выраженное целыми числами (5 6) отношение двух перпендикулярных сторон. Поначалу я подумал что это просто счастливое совпадение. Треугольник был выбран потому, что отвечал критериям градусного основания, кратного десяти, то есть имел углы 40°, 50° и 90°. Вскоре меня озарило можно построить большое число углов с помощью очень простых числовых отношений. Построив прямоугольный треугольник и меняя от ношения сторон, можно легко получить определенные углы. Мне оставалось лишь найти отношения, необходимые для построения различных углов.

По случайному совпадению именно эту систему применяли древние египтяне для установления склона своих пирамид — вспомним секед угла. Разница заключалась лишь в том, что египтяне использовали такое отношение для установления градиентов, а древние бритты — для построения углов на горизонтальной плоскости. Зная нужные отношения, легко можно было построить весь ряд углов, не располагая знаниями о сложной геометрии и сложными приборами. Стало ясно, почему археологи не раскопали никаких теодолитов. Искомые углы могли быть построены с помощью простых и широко доступных материалов.

Для построения какого-либо угла на ровном участке земли нужны лишь тонкая бечевка, несколько колышков и измерительное устройство для фиксации отношений. Идеально подходит прямой отрезок ствола молодого деревца длиной в один-два метра. Весь фокус в том, чтобы знать отношения искомого угла, и его уже легко изобразить на земле.

Система проще некуда. Необходимо лишь знать, какие отношения дают требуемые углы, например, в случае уже описанного треугольника древним землемерам следовало лишь помнить отношение 6:5. Оно дает углы в 39,81° и 50,19°, что весьма близко к 40° и 50° (рис. 61).

При использовании такого метода и таких отношений погрешность составит менее 3,5 метра (11,5 фута) на 1 километр (0,62 мили). Некоторые отношения дают гораздо большую степень точности. В случае угла в 6°, получаемого при отношении 19:2, погрешность составит 1 к 4000. Ее можно проиллюстрировать следующим примером: во время путешествия из Лондона в Нью-Йорк отклониться на одну милю от точки назначения.

Ныне схожая система используется в тригонометрии, устанавливающей особые отношения для вычисления углов. Их называют синусы, секансы и тангенсы, а их обратные величины — косинусы, косекансы и котангенсы. Синусы и косинусы можно использовать для вычисления углов при известной длине гипотенузы, а тангенсы связаны отношением между основанием и перпендикулярной стороной прямоугольного треугольника. Компьютеры и калькуляторы вычисляют эти величины в доли секунды, — а в мои школьные годы нам приходилось искать их в ряде таблиц.

Композиция холма Бредон

С помощью этой легкой системы построения углов можно простым и все же точным способом определить схемы ландшафта. Применительно к району холма Бредон я нашел следующие широко использованные отношения:

В то время я предполагал, что углы в 30°, 60°, 46° и 90° были получены с помощью геометрических построений, но позже — как мы увидим дальше — мне пришлось пересмотреть свою точку зрения.

Я подозревал, что объекты данного района были объединены иной геометрической схемой. Найденные мною углы в 30°, 60° и 90°, не сомневался я, указывали на некую форму обдуманной планировки. Я был уверен, что нахожусь на пороге открытия другой схемы вроде уже найденной на Марлборо-Даунс. Это подкрепило бы теорию, что подобные схемы были широко распространенным явлением. Изначально я искал круги, но они не выявлялись. Однако повсюду я натыкался на большее число треугольников, чем могли бы дать значимые отношения.

Мои прежние исследования подсказывали, что где-то в композиции должен нарисоваться равносторонний треугольник, и я принялся его искать. Когда же я нашел его, он оказался центральным в построении треугольной матрицы местоположения главным образом храмовых объектов.

Геометрия объектов холма Бредов

Первоначальный треугольник образован церковью Дамблтона, холмом Вулстоун и церковью Оувербери Холм. Вулстоун является господствующей высотой, с которой открывается вид на большую часть района, а церковь Дамблтон гнездится у основания холма Олдертон, который блокирует линию прямой видимости и с церковью Оувербери, и с холмом Вулстоун. Церковь Оувербери расположена на южном склоне холма Бредон. Ныне линия прямой видимости с него на холм Вулстоун заблокирована домами, но в прошлом последний несомненно просматривался при условии, если этому не мешали деревья. Расстояния между тремя объектами измеряются 6250 метрами (3,88 мили).

На рисунке 63 показано взаимоотношение трех главных объектов — церкви Оувербери, церкви Дамблтон и холма Вулстоун, отмеченное треугольником АВС. Как видим, угол ABE с линией визирования на аббатство Тьюкесбери равен 30°, как и угол СВЕ. Таким образом, линия ЕВ делит пополам сторону АС в точке S. Продление линии АВ до точки Т, то есть на расстояние ВТ, равное расстоянию BS, определяет местоположение церкви Стэнтон.

После установления первого треугольника следующим логичным шагом стало определение, как положение церкви Большого Комбертона вписывается в схему. Компьютерный анализ района показал, что эта церковь расположена под углом в 90° к линии, соединяющей холм Вулстоун с церковью Дамблтона. Замкнув треугольник линией, соединяющей холм Вулстоун с церковью Большого Комбертона, получаем угол в 55° на холме Вулстоун и угол в 35° у церкви Комбертона. На рисунке 61 показано, что прямоугольный треугольник с углами 55° и 35° может быть построен на отношении 7:10.

После установления местоположения церкви Большого Комбертона стало возможным определить местополо жение аббатства Тьюкесбери, построив еще один прямо угольный треугольник. Соединив точки D и Т (Большой Комбертон и Стэнтон) и построив прямой угол в точке D, точка Е — местоположение аббатства Тьюкесбери оказывается на пересечении этой линии с линией BS, которая делит пополам вершину изначального равностороннего треугольника (рис. 64).

В Древнем Египте это отношение использовалось при вычислении земельных площадей. Можно добиться простого приближения, удваивая площадь с помощью отношения 7 к 10 в виде 72 = 49, а 102 = 100.

Поделиться:
Популярные книги

Законы Рода. Том 6

Flow Ascold
6. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 6

Мастер Разума IV

Кронос Александр
4. Мастер Разума
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер Разума IV

Эфемер

Прокофьев Роман Юрьевич
7. Стеллар
Фантастика:
боевая фантастика
рпг
7.23
рейтинг книги
Эфемер

Идеальный мир для Лекаря 3

Сапфир Олег
3. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 3

Сумеречный Стрелок 3

Карелин Сергей Витальевич
3. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 3

Корсар

Русич Антон
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
6.29
рейтинг книги
Корсар

Ну, здравствуй, перестройка!

Иванов Дмитрий
4. Девяностые
Фантастика:
попаданцы
альтернативная история
6.83
рейтинг книги
Ну, здравствуй, перестройка!

Последний попаданец 2

Зубов Константин
2. Последний попаданец
Фантастика:
юмористическая фантастика
попаданцы
рпг
7.50
рейтинг книги
Последний попаданец 2

Последняя жена Синей Бороды

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Последняя жена Синей Бороды

#Бояръ-Аниме. Газлайтер. Том 11

Володин Григорий Григорьевич
11. История Телепата
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
#Бояръ-Аниме. Газлайтер. Том 11

Мастер...

Чащин Валерий
1. Мастер
Фантастика:
героическая фантастика
попаданцы
аниме
6.50
рейтинг книги
Мастер...

Лорд Системы 8

Токсик Саша
8. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 8

Титан империи 2

Артемов Александр Александрович
2. Титан Империи
Фантастика:
фэнтези
боевая фантастика
аниме
5.00
рейтинг книги
Титан империи 2

Законы Рода. Том 4

Flow Ascold
4. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 4