Суперобъекты. Звезды размером с город
Шрифт:
Конфигурации устойчивых орбит планет в двойных системах. Планета может вращаться вокруг всей пары на расстоянии заметно большем, чем размер звездных орбит, или вокруг одной из звезд, находясь вблизи нее.
Говоря о планетах в двойных, мы можем вспомнить о тройных звездах. Устойчивыми оказываются только иерархические системы. Возможны две ситуации, когда планетная орбита оказывается устойчивой. Бывает, что планета вращается очень близко от одной из звезд и вторая звезда лишь несильно возмущает орбиту планеты. Это не так интересно, так как фактически у такой планеты одно солнце (второе будет намного слабее в небе такой планеты). А могут быть планеты,
Сейчас известно уже несколько десятков планет в двойных звездных системах. Как вокруг какой-нибудь из звезд двойной, так и вокруг всей системы. Но есть и планеты в тройных системах. Одна из них (в системе GJ 667) даже находится в зоне обитаемости и имеет не слишком большую массу. То есть она может относиться к планетам земного типа и иметь на своей поверхности жидкую воду.
В некоторых планетных системах мы можем наблюдать процессы, аналогичные происходящим в тесных двойных системах. Например, если планета подобралась слишком близко к звезде, то та может ее нагревать своим излучением, возмущать своим приливным воздействием. Так же, как в тройных системах, может запускаться механизм Козаи – Лидова, приводящий к квазипериодическим изменениям наклона орбиты и ее вытянутости. Наконец, может даже начаться аккреция, а в конце концов планета может слиться со звездой, что будет сопровождаться яркой вспышкой. Их надеются обнаружить, когда войдет в строй большой обзорный телескоп LSST.
Сам процесс образования планет происходит в диске, окружающем звезду (сейчас мы даже видим диски вокруг молодых двойных звезд). Изучение дисков в астрофизике десятилетиями было в основном связано с исследованием тесных двойных. Поэтому многие методы и решения, разработанные для двойных, – например, решение Шакуры-Сюняева, – интенсивно используется для моделирования формирования планетных систем.
В течение последних лет планеты вокруг двойных звезд перестали быть фантастикой, и теперь мы знаем различные системы такого типа. Поговорим теперь, возможно, о самых фантастических двойных звездах.
VI. Релятивистские двойные звезды
Релятивистские двойные – это системы, где хотя бы один из объектов является очень компактным, и поэтому для описания таких систем нужна теория относительности (собственно, обе: и Частная – так называемая Специальная, – и Общая). По-английски «теория относительности» – theory of relativity. Поэтому компактные объекты и системы с ними называют релятивистскими. Обычно это системы или с нейтронными звездами, или с черными дырами. В будущем мы надеемся открыть и двойные, состоящие сразу из нейтронной звезды и черной дыры.
Двойные системы занимают важное место и в астрофизике обычных звезд. Самое главное, для чего звездные двойные системы понадобились астрономам, – это измерение масс. Поскольку если мы наблюдаем одиночную звезду, то точно измерить ее массу практически невозможно. Значит, нам нужно, чтобы что-то вокруг нее крутилось (и сама она также обращалась вокруг другого тела, точнее, они обе обращались вокруг центра масс). К счастью, есть двойные системы, и там мы можем измерять массы звезд. А потом, когда мы видим одиночную звезду, мы можем сказать: «Она похожа на одну из тех звезд в двойных, для которых мы измеряли массу, поэтому мы думаем, что масса этой одиночной звезды такая-то». Примерно так все это работает, хотя реальность, как обычно, немножечко богаче и сложнее.
Массивные двойные
Итак, образовалась двойная звезда. Почему же сформировалась пара, а не один объект? Сжимающееся облако газа и пыли вращается. Такое облако всегда вращается – в космосе вообще все вращается. Чем сильнее оно сжимается, тем быстрее вращается. И, наконец, центробежная сила способна остановить сжатие. Читатель может справедливо возразить, что никакой центробежной силы нет. Строго говоря, это верно (ведь, скажем, на Землю, вращающуюся вокруг Солнца, действует только сила солнечного притяжения, никакой другой реальной силы нет). Но зато есть закон сохранения момента импульса. Например, именно из-за необходимости преодолевать инерцию вращения нам труднее запустить аппарат к Меркурию, чем к Юпитеру, хотя Меркурий гораздо ближе. Сжимающемуся веществу очень трудно избавиться от вращения, а это необходимо сделать, для того чтобы стать еще компактнее.
По мере сжатия скорость вращения возрастет настолько, что станет невозможным образовать единый более
Так вот, представим, что у нас образовалась двойная система, и пусть для определенности у нас обе звезды достаточно массивные. Тогда с течением времени одна из них (напомним, что более массивная эволюционирует быстрее своей соседки) закончит свою эволюцию, взорвется и породит нейтронную звезду. Затем вторая тоже закончит свою эволюцию и тоже произведет на свет нейтронную звезду. Таким образом, будет система из двух нейтронных звезд, а до этого – на какой-то стадии эволюции – пара из нейтронной звезды и обычной звезды, которая еще не превратилась в релятивистский объект. Это очень интересные системы, и именно в них мы можем измерять массы компактных объектов: массы черных дыр и нейтронных звезд. Это очень важно, в частности, если мы хотим понять, как наши суперобъекты устроены внутри.
Измерение масс компактных объектов – ключевой момент, если мы хотим доказать существование черных дыр. Впервые об этих объектах как возможной интерпретации наблюдаемых источников начали говорить в конце 60-х – начале 70-х годов ХХ века. Тогда начали открывать системы, состоящие из релятивистского объекта и нормальной звезды, вещество которой перетекает на компактного соседа, и при этом выделяется очень много энергии, поскольку вещество разгоняется гравитацией до очень большой скорости. Скажем, если оно падает в черную дыру – то до скорости света (по определению). На нейтронную звезду вещество падает с немножко меньшей скоростью, но тем не менее, останавливаясь на поверхности нейтронной звезды, оно имеет большую кинетическую энергию, вся эта энергия выделяется, и у нас возникает очень яркий источник.
В каком диапазоне будет излучать наш источник? Мы знаем, что холодные звезды имеют температуру поверхности около 3000 K и светят красным светом. Солнце со своими 6000 K – желтая звезда. Более горячие Сириус и Вега – белые. Чем горячее звезда – тем дальше максимум в спектре ее излучения сдвигается в сторону коротких волн. Чем короче волна – тем больше средняя энергия испускаемых фотонов. Если источник излучает много энергии с маленькой площади, то каждый из фотонов, которые уносят энергию, сам будет иметь большую энергию. (Это похоже на описанную выше ситуацию, когда вам надо унести крупную сумму в небольшом чемодане – конечно, вы возьмете самые крупные купюры!) В случае нейтронных звезд и черных дыр в двойных системах это оказываются рентгеновские фотоны, соответствующие температуре вещества в миллионы градусов.
Спектры черного тела для разных температур. Видно, что с ростом температуры максимум сдвигается в сторону более коротких волн.
В 60-е годы ХХ века возникла рентгеновская астрономия. А в начале 1970-х одно за другим последовали открытия новых удивительных источников. Оказалось, что зачастую мы видим двойные системы, где вещество течет с обычной звезды на компактный объект. В такой ситуации мы можем измерить массу компактного объекта, и она для некоторых из них оказалась большой. Что это означает с точки зрения физики? Например, если у нас есть компактный объект с массой 3, 4, 5, или 10 солнечных масс, то мы не можем сделать его из обычного вещества. Нам приходится предположить, что в этой системе находится черная дыра, поскольку нейтронные звезды не могут быть столь массивными – для них существует некий верхний предел. Мы не знаем его точно, но это где-то 2–3 солнечные массы, и, когда релятивистская звезда достигает этого предела, она схлопывается в черную дыру. Таким образом, компактные объекты, обладающие достаточно большой массой, не могут избежать превращения в черные дыры. Это не относится к обычным звездам, которые могут иметь массу и 100, и 120 солнечных масс, – у них внутри есть источник энергии, и давление внутри вещества предотвращает схлопывание в черную дыру. Но в случае рентгеновских двойных мы уверены, что второй компонент не является обычной звездой.