Чтение онлайн

на главную

Жанры

Сверточные нейросети
Шрифт:

Применение AlexNet привело к значительному улучшению точности классификации изображений на датасете ImageNet, снизив ошибку на несколько процентных пунктов по сравнению с предыдущими методами. Этот успех показал потенциал глубокого обучения и сверточных нейронных сетей в области компьютерного зрения, стимулировав дальнейшее развитие этой области и внедрение CNN в широкий спектр приложений, от распознавания объектов до автономного вождения.

4. VGGNet (2014): VGGNet, представленная в 2014 году, стала важным шагом в развитии сверточных нейронных сетей, предложив новый подход к архитектуре сети. Её создание было обусловлено стремлением к увеличению глубины нейронной сети с целью улучшения её способности к извлечению

признаков из изображений. В отличие от предыдущих архитектур, VGGNet предлагала использовать последовательные слои свертки с небольшими ядрами размером 3x3, что значительно упростило структуру сети.

Этот подход позволил строить нейронные сети с большей глубиной, что отразилось на их способности к обучению и классификации изображений. Вместо того чтобы использовать большие ядра свертки, как это делали предыдущие модели, VGGNet сосредотачивалась на использовании множества последовательных слоев с более мелкими ядрами, что давало более гибкий и эффективный способ анализа изображений.

Благодаря своей простоте и эффективности, VGGNet стала популярным выбором для многих задач компьютерного зрения. Её способность строить глубокие сети и достигать высокой точности в классификации изображений привлекла внимание исследователей и инженеров, стимулируя дальнейшее развитие сверточных нейронных сетей и их применение в различных областях, от распознавания объектов до медицинской диагностики.

5. GoogLeNet (Inception, 2014): GoogLeNet, представленная в 2014 году, представила инновационный подход к архитектуре сверточных нейронных сетей (CNN), введя новый тип модулей, названных Inception. Эти модули существенно отличались от предыдущих подходов, так как объединяли свертки с различными размерами ядер в одном слое. Это позволило сети одновременно изучать признаки на разных уровнях детализации, что существенно улучшило её способность к анализу изображений.

Использование Inception-модулей в архитектуре GoogLeNet привело к созданию более эффективных сетей с меньшим количеством параметров по сравнению с традиционными архитектурами. Это стало возможным благодаря параллельному применению сверток различных размеров внутри одного модуля, что позволило сети эффективно изучать различные аспекты изображений на разных масштабах.

Кроме того, GoogLeNet внедрила дополнительные техники, такие как использование 1x1 сверток для уменьшения размерности признакового пространства и улучшения вычислительной эффективности. Эти инновации помогли создать сеть, которая достигала высокой точности в классификации изображений при более низкой вычислительной сложности, что было важным преимуществом при работе с огромными наборами данных, такими как ImageNet.

6. ResNet (2015): ResNet, представленная в 2015 году, предложила инновационное решение для проблемы исчезающего градиента, с которым сталкиваются глубокие нейронные сети при обучении. Одной из ключевых проблем при обучении глубоких сетей является затухание градиентов: по мере прохождения градиентов через множество слоев они могут становиться слишком малыми, что затрудняет обучение и приводит к ухудшению производительности сети. ResNet решает эту проблему с помощью введения остаточных связей, или "скачков" ("residual connections"), которые позволяют пропускать градиенты через несколько слоев непосредственно, минуя промежуточные операции.

Остаточные связи позволяют сети строить глубокие архитектуры, состоящие из сотен или даже тысяч слоев, сохраняя при этом стабильный градиент и обеспечивая более эффективное обучение. Это достигается путем добавления к выходу слоя предыдущего слоя (с учётом функции активации) или, иначе говоря, суммирования выхода текущего слоя с пропущенным через нелинейную функцию активации выходом предыдущего слоя.

Благодаря этой инновации ResNet стала одной из самых важных и влиятельных архитектур в области глубокого

обучения. Она не только демонстрировала выдающуюся производительность на стандартных наборах данных для классификации изображений, таких как ImageNet, но и повлияла на дальнейшее развитие глубокого обучения, стимулируя исследования в области архитектурных инноваций и методов оптимизации.

7. EfficientNet (2019): EfficientNet, представленная в 2019 году, представляет собой архитектурный прорыв в области сверточных нейронных сетей, направленный на оптимизацию производительности сетей при минимальном потреблении ресурсов. Она вводит новый принцип масштабирования, который включает в себя изменение ширины, глубины и разрешения сети. Этот принцип дает возможность создавать сети, которые могут быть эффективно адаптированы к разным задачам и ресурсам.

Ключевая особенность EfficientNet заключается в том, что она балансирует размеры сети, чтобы достичь наилучшей производительности при ограниченных ресурсах. Она автоматически масштабирует ширину, глубину и разрешение сети, оптимизируя каждый из этих параметров для максимальной эффективности.

Эффективность EfficientNet проявляется не только в высокой точности классификации изображений, но и в быстродействии и низком потреблении ресурсов, что делает её идеальным выбором для решения различных задач в условиях ограниченных вычислительных ресурсов, таких как мобильные устройства или встраиваемые системы. Благодаря своей универсальности и эффективности, EfficientNet стала одной из ведущих архитектур в области компьютерного зрения и продолжает привлекать внимание исследователей и разработчиков.

Ключевые элементы: свертка, активация, пулинг, нормализация

Основные элементы, составляющие архитектуру CNN, включают:

Свертка (Convolution):

Свертка (Convolution) является одной из ключевых операций в сверточных нейронных сетях (CNN), играющей важную роль в извлечении признаков из входных данных, таких как изображения. Операция свертки осуществляется путем сканирования входного изображения с помощью набора фильтров, также известных как ядра свертки. Каждый фильтр выявляет определенные локальные паттерны или признаки, такие как грани, текстуры или более сложные структуры, и создает карту признаков, отражающую наличие этих признаков в разных областях изображения.

Фильтры в сверточной нейронной сети представляют собой набор параметров, которые обучаются в процессе тренировки модели. Во время обучения сети эти фильтры настраиваются таким образом, чтобы максимизировать различие между классами объектов на изображениях или выполнить другие задачи, связанные с обработкой данных. Фильтры перемещаются по входному изображению с определенным шагом, называемым шагом свертки (stride), и для каждой позиции создается новая карта признаков.

Операция свертки является основой для извлечения иерархии признаков из изображений и других типов данных с сетчатой структурой. Она позволяет нейронной сети автоматически изучать наиболее информативные признаки из входных данных без необходимости предварительного определения характеристик, что делает сверточные нейронные сети мощным инструментом для анализа и обработки изображений, а также для решения широкого спектра задач машинного зрения.

Для более наглядного представления работы операции свертки, рассмотрим пример применения фильтра к изображению. Предположим, у нас есть 3x3 матрица, представляющая собой часть черно-белого изображения:

```

[120, 100, 80]

[90, 110, 70]

[100, 120, 110]

```

Теперь допустим, у нас есть фильтр размером 2x2:

```

[1, 0]

[0, 1]

```

Чтобы применить этот фильтр к нашей матрице, мы начинаем с левого верхнего угла матрицы и перемножаем элементы матрицы на соответствующие элементы фильтра:

Поделиться:
Популярные книги

Мастер 6

Чащин Валерий
6. Мастер
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер 6

Болотник

Панченко Андрей Алексеевич
1. Болотник
Фантастика:
попаданцы
альтернативная история
6.50
рейтинг книги
Болотник

Старатель 3

Лей Влад
3. Старатели
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
Старатель 3

Идеальный мир для Лекаря 5

Сапфир Олег
5. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 5

Приручитель женщин-монстров. Том 3

Дорничев Дмитрий
3. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 3

Мастер 3

Чащин Валерий
3. Мастер
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер 3

Кодекс Охотника. Книга XIV

Винокуров Юрий
14. Кодекс Охотника
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XIV

Невеста

Вудворт Франциска
Любовные романы:
любовно-фантастические романы
эро литература
8.54
рейтинг книги
Невеста

Наследник

Кулаков Алексей Иванович
1. Рюрикова кровь
Фантастика:
научная фантастика
попаданцы
альтернативная история
8.69
рейтинг книги
Наследник

Волк 2: Лихие 90-е

Киров Никита
2. Волков
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Волк 2: Лихие 90-е

Три `Д` для миллиардера. Свадебный салон

Тоцка Тала
Любовные романы:
современные любовные романы
короткие любовные романы
7.14
рейтинг книги
Три `Д` для миллиардера. Свадебный салон

Мимик нового Мира 5

Северный Лис
4. Мимик!
Фантастика:
юмористическая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 5

Целитель

Первухин Андрей Евгеньевич
1. Целитель
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Целитель

Последний Паладин. Том 5

Саваровский Роман
5. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 5