Свет невидимого
Шрифт:
Удивляться необычному объему справочника не приходится, ведь в нем собраны сведения о большинстве известных науке органических соединений.
Не знаю, сколько соединений описано в справочнике Бейльштейна. Кто говорит — миллион, а кто утверждает, что все три. Среди моих знакомых не нашлось ни одного, кто отважился бы пересчитать все соединения, сведенные в справочнике. Да и что толку пересчитывать — за темпами науки все равно не угнаться. Считается, что каждый год химики синтезируют полмиллиона новых органических соединений — две тысячи за рабочий день, около сотни в час. За время, какое вы потратили на чтение этого
Я вспомнил о справочнике Бейльштейна вовсе не потому, что нам придется сейчас с его помощью выуживать сведения о каком-то экзотическом органическом соединении. Воспользуемся тем, что в нем описаны, хотя и очень кратко, методы получения каждого из соединений. И попробуем установить, сколько же способов заставлять вещества вступать в реакцию известно современной химии. Ну, если и не все способы (веществ-то миллионы!), то хотя бы основные из них. И попробуем их как-то систематизировать (классифицировать).
Работа, разумеется, не из легких. Но тут снова, не в первый раз, придется напомнить, что эта книга относится к научно (научно!) — художественному жанру. А наука — это всегда труд.
Приготовим толстую тетрадь, отточим поострее карандаши, проверим стержни в авторучках и — за работу!
Снимем с полки первый том справочника. Открываем первую страницу: «Смешиваем, нагреваем…» Так, стало быть, способ первый: нагревание.
Следующее соединение… Так, формула, физические константы, способ синтеза: «Сливаем и кипятим…» Но ведь это снова нагревание.
Переворачиваем страницу: «Смесь предварительно растирают в ступке, а затем продолжительно прокаливают в муфельной печи…» И здесь нагревание!
Десятая страница: «…взбалтывают и затем нагревают…»
Сотая: «…смесь помещают в пламя газовой горелки…»
Пятисотая: «…выдерживают при температуре 350–400 градусов…»
Тысячная: «…нагревают…»
Весь первый том просмотрен, а в нашей толстой тетради заполнена лишь первая строка первой страницы, и значится там одно слово: «нагревание».
Скажу сразу: вы можете перелистать остальные 99 томов и не обнаружите ничего, вернее, почти ничего, кроме нагревания как универсального способа возбуждения химической реакции. Слово «почти» применено здесь потому, что изредка, примерно один раз на 200, вы встретите указания на проведение процесса с помощью электрического тока (электролиз). Повстречаются еще указания на применение высокого давления, но только неизменно в сочетании с нагреванием.
Как видим, все необозримое многообразие соединений, известных современной химии, получено, по сути, с помощью всего двух способов внешнего воздействия на смесь реагирующих веществ. Да, арсенал средств, находящихся в распоряжении химиков, в этом плане ничуть не богаче того, каким располагали алхимики. Те ведь твердо знали, что нагревание — отличный и почти всегда срабатывающий способ заставить вещества реагировать друг с другом.
Давайте выясним: почему нагревание — такой излюбленный прием химиков, почему этот несложный процесс одинаково безотказно вызывает реакцию между самыми разнообразными веществами?
Электрический ток существенно усилил арсенал химиков. Не буду пояснять подробно, почему электрический ток так пришелся по душе химикам. Напомню только, что химическая реакция — это передача электронов от одного вещества другому. А электрический ток не что иное, как поток электронов. Вот почему, пропуская ток через раствор какого-либо вещества, можно вызвать его превращения [11] .
— Ну что же, — беспечно заметит читатель, — если с помощью нагревания и электрического тока удалось получить столько соединений, то следует ли сетовать на то, что способов вызывать реакцию так мало. А быть может, больше и не нужно!
11
Понятно, что для этого нужно, чтобы раствор проводил электрический ток, а это возможно лишь в том случае, если растворенные в воде либо другом растворителе вещества были электролитами, имыми словами, распадались на ионы. Это условие значительно сужает круг веществ, которые могут быть синтезированы путем электролиза. Именно поэтому электролиз как способ осуществления химической реакции по распространенности никак не может конкурировать с обычным нагреванием.
Нужно, и даже очень! В учебнике химии написано: «Реакция невозможна, если реагирующие вещества не сосуществуют в одном, пусть узком, температурном интервале». Понятно? Думаю, что не очень. Попробую растолковать яснее. Впрочем, самым лучшим объяснением, по-видимому, будет пример из практики. За примерами далеко ходить не приходится. Вот хотя бы сегодня подошла ко мне лаборантка и озабоченно сказала:
— Юрий Яковлевич, не окисляется.
— Не может быть! — удивился я. — Должно окисляться.
В самом деле, мы должны были окислить одно органическое соединение. Окислителем была выбрана концентрированная азотная кислота — вещество, которое очень охотно отдает свой кислород. Почему же реакция не идет?
Даю совет, какой на моем месте, так же не задумываясь, дал бы любой химик:
— Нагрейте.
Через 15 минут лаборантка явилась снова:
— Опять ничего не выходит.
— Сильнее нагрейте!
Еще через 15 минут:
— А вот теперь уже наверняка ничего не выйдет!
— ???
— Вся азотная кислота улетучилась.
М-да… Положение действительно неважное. Азотная кислота кипит при 86 градусах. Эта температура недостаточна для того, чтобы заставить прореагировать наши вещества. Понятно теперь, что такое «сосуществование в одном температурном интервале»? Не всегда выходит в химии это «сосуществование». А раз так, то не выходит и реакция.
Тот случай, о котором я рассказал, довольно легкий. Мы справились с нашей реакцией, запаяв смесь веществ в стеклянную ампулу. Теперь смесь можно было нагревать до значительно более высокой температуры.