Свет невидимого
Шрифт:
— Ого, крепко! — уважительно удивились химики. — Здесь безусловно что-то должно получиться.
С этими словами химики отправились в лаборатории для того, чтобы провести эксперименты, моделирующие условия, какие были на нашей планете вскоре после того, как сформировалась твердая оболочка и атмосфера (конечно, даже в малой степени не походившие на то, что мы видим сейчас).
В колбах были смешаны метан, аммиак, вода, простейшие углеводороды. На всякий случай установили уровень внешнего электромагнитного поля, соответствующий той геологической эпохе. Учли, что тогда первичную атмосферу пронизывали сильнейшие разряды-молнии беспрерывных гроз — воспроизвели
Один шутник предлагал даже для пущего правдоподобия занавесить окна, чтобы в лабораторию не проникал лунный свет — астрономы утверждали, что тогда, быть может, Земля еще не обзавелась спутником.
С Луной, без нее ли, но опыт дал результаты, которые удивили химиков, а астрономов привели в состояние живейшего восторга. Оказалось, что из сравнительно несложных исходных веществ в тех неспокойных условиях, какие царили на Земле в начальные периоды ее развития, образуются достаточно сложные и разнообразные органические соединения.
Примечательно, что в образующейся смеси присутствуют многие из тех аминокислот, которые входят в состав практически всех белков биологического происхождения: глицин, аланин, валин и многие другие. Там же обнаружили и азотистые основания, также входящие обязательной составной частью в любое живое вещество: аденин, тимин, урацил.
Кроме того, эти необычные опыты химиков, преследующие своей целью узнать, как протекали реакции в земной атмосфере четыре миллиарда лет назад, показали, что там образовывались и органические соединения, пусть не очень сложного строения, но обладающие сильным стремлением вступать во взаимодействие — цианистый водород, формальдегид, муравьиная кислота, мочевина. Специалисты в области органической химии хорошо знают, что перечисленные соединения, реагируя друг с другом, а также с иными веществами, приводят к образованию соединений, молекулы которых состоят из десятков и даже сотен атомов углерода, водорода, кислорода, азота — тех основных элементов, из каких состоит живое вещество.
Затем выяснилась дополнительная роль радиационно-химических превращений в органической химии «далекого прошлого». Если облучать сравнительно малыми дозами радиоактивного излучения сосуд, в котором растворены органические соединения с малой молекулярной массой — не более 40, то через несколько суток в сосуде, моделирующем в данном случае первичный океан Земли, образуются органические соединения с молекулярной массой, превышающей 3000. Вот какими стремительными темпами происходит при воздействии радиоактивности укрупнение органических молекул!
Не перегнул ли автор палку в своем стремлении «возвеличить» роль радиоактивности? Получается, что происхождение Земли, Солнечной системы, да и звезд, вообще, стало быть, и Вселенной, обусловлено законами радиоактивности. А теперь, оказывается, и жизнь произошла благодаря радиоактивному облучению.
Выходит, что так. Впрочем, тема далеко еще не исчерпана, и по-моему, самое интересное еще впереди.
Тот самый стул, на котором вы сидите, спокойно читая книгу, каждую минуту испускает 40 000 (сорок тысяч!) бета-частиц. Да, именно столько атомов распадается в стуле за одну минуту. Так что за то время, что вы читали вступительные
Постойте, не торопитесь выбрасывать стул. Поступив так, вы бы совершили крайне опрометчивый поступок. Потому что, во-первых, этот стул, несмотря на свои ежеминутные 40 тысяч распадов, абсолютно безвреден, а во-вторых, любой иной стул, если он будет только сработан из дерева, окажется не менее радиоактивным.
Я напрасно нагоняю зловещего тумана. В моем сообщении о 40 тысячах распадов в обычном стуле для читателя не должно быть ничего неожиданного. Помните, во второй главе, где много рассказывалось о радиоактивном углероде, сообщалась любопытная цифра: каждый грамм углерода биологического происхождения в минуту дает 16 распадов за счет примеси радиоактивного изотопа углерода-14, Подсчитав содержание углерода в дереве, из которого сделан стул, вы и получите величину 40 тысяч распадов в минуту.
Тот, кто, прочитав эти строки, задумает освободиться от деревянной мебели, поступит чрезвычайно глу… или, лучше скажем, легкомысленно. Не говоря о том, что эта акция не вызвала бы восторга домашних, она ничуть не способствовала бы снижению радиоактивности жилища. Почему?
Потому что в вашем доме есть стены. А стены содержат значительное количество калия. А калий содержит примесь естественного радиоактивного изотопа. А атомы этого радиоизотопа (калия-40) испускают бета-лучи.
— Что за напасть! — горестно удивится иной пессимист. — Никуда от этой радиоактивности не денешься. Вот что цивилизация наделала! Уйду в лес и буду жить на природе — уж там никакого излучения не будет!
Бедняга пессимист, его следует жестоко разочаровать. В лесу он будет жить в шалаше из веток, спать станет на соломе, а в костер пойдут шишки. А ведь во всех этих вещах радиоактивного углерода ничуть не меньше, чем в той деревянной мебели, которую он так непредусмотрительно выбросил.
Впрочем, если бы этот паникер, решив быть последовательным до конца, вздумал обходиться без шалаша и без сена, то едва ли ему от этого было бы лучше. Потому что могу сообщить ему следующее «успокоительное» известие: каждую минуту в его теле распадается приблизительно 800 000 (да, да, линотипист не ошибся — именно восемьсот тысяч) атомов различных радиоактивных элементов.
— Эге, не ошибся линотипист, так автор что-то напутал! — скажут иные читатели. — Восемьсот тысяч! Что-то очень много…
Много или мало — это уже зависит от точки зрения. А вот то, что распадов и впрямь не меньше названной величины — это точно.
На долю углерода приходится около 200 тысяч распадов в минуту (умножьте вес углерода в теле человека средних габаритов на 16, и вы получите эти 200 000).
Еще примерно 400 тысяч распадов в минуту приходится на радиоактивный калий. Ведь калий — один из самых распространенных элементов организма. Итого 600 тысяч.
Недостающие 200 тысяч с лихвой покрывают тяжелые радиоактивные элементы: уран, торий, радий. Пусть эти элементы содержатся в организме в ничтожно малом количестве, зато они обладают большой интенсивностью излучения и сравнительно небольшим периодом полураспада. Вот почему вклад их в общую радиоактивность организма велик в сравнении с их содержанием в живых тканях.