Чтение онлайн

на главную

Жанры

Шрифт:

Из всей энергии, выделяющейся в ядерном реакторе при делении ядер урана, используется лишь та ее часть, которая превращается в тепло при разлете ядерных осколков и при радиоактивном распаде этих осколков. Неудивительно, что эта часть энергии составляет лишь долю, причем достаточно скромную, от величины всей высвобождающейся энергии. Остальная энергия аккумулируется в образовавшихся продуктах деления урана — а это не что иное, как разнообразные химические элементы. Уточним, радиоактивные элементы.

Причина радиоактивности? Именно в этих осколках сосредоточена основная доля энергии, высвобождающейся при делении ядер урана. Стремясь освободиться от избыточной энергии, ядра образовавшихся элементов выбрасывают

электроны либо гамма-кванты, то есть подвергаются радиоактивному распаду.

Для химиков особенно важно то, что в отходах ядерных реакторов, в урановой «золе», содержатся искусственные радиоактивные изотопы большей части элементов системы Менделеева. Вот почему, если еще лет сорок назад искусственные радиоактивные изотопы были доступны единичным лабораториям, то сегодня каждому студенту-химику при выполнении им практических работ предлагают разнообразный набор различных радиоактивных элементов.

Теперь становится понятным, что так печалило физиков. Для кручины у них имелись достаточно веские основания: они попросту не знали, что делать с таким количеством радиоактивных элементов, какие накапливаются в ядерных реакторах. А радиоактивность эта действительно громадна. Достаточно даже не очень большому реактору проработать сутки, и там накопится такое количество продуктов распада урана, какое по своей радиоактивности в десятки раз превышает радиоактивность элементов, выделенных во всех лабораториях и заводах со времени открытия радиоактивности до того времени, когда был сконструирован первый реактор (1942).

Число ядерных реакторов на земном шаре непрерывно увеличивается. И уже почти 30 лет со страниц газет не сходит выражение «радиоактивные отходы». Сотни ученых в десятках стран ломали голову над тем, что же делать с радиоактивными отходами, которые непрерывно и во все возрастающем количестве вырабатывают ядерные реакторы.

Чего только не предлагали!

Закапывать в глубокие бетонные ямы. И закапывали.

Прятать в заброшенных шахтах. И прятали.

Топить в глубоких океанских впадинах. И топили.

Запускать в ракетах в межпланетное пространство. И… Нет, пока еще не запускали. И по-видимому, не столько потому, что такой способ избавления от ядерной «золы» чрезмерно дорог, сколько из-за опасений, что при запуске ракеты может случиться какая-нибудь неприятность и опасный шлак развеется в атмосфере.

Конечно, джинна, выпущенного из бутылки, можно было бы в данном случае загнать обратно: остановить ядерные реакторы и тогда не будет никаких отходов. Но этот выход, разумеется, никого не устраивает.

* * *

Плохо физикам — в ядерных реакторах пропадает зря много энергии. Печалятся и химики — арсенал имеющихся в их распоряжении средств для проведения реакций скуден и, главное, не всегда удовлетворителен. Но когда плохо ученым, и особенно если эти ученые физики и химики, вывод, как правило, находится. Вот и здесь…

* * *

Если вам вздумается проводить реакцию водорода с хлором, то прежде всего подумайте, так ли уж вам это необходимо. Если, поразмыслив, вы все же утвердитесь в намерении соединять водород с хлором, то постарайтесь, чтобы резервуар, в котором будет идти реакция, не был стеклянным (металлическим, пластмассовым — пожалуйста). Если же по условиям опыта требуется, чтобы реакция протекала в стеклянном сосуде, то прежде тщательно покройте его темной краской либо заверните в плотную темную ткань. Если же почему-либо этого сделать нельзя, то предупредите, чтобы никто не подходил к месту эксперимента ближе, чем на … метров. Число, какое следует поставить

на место многоточия, зависит от объема сосуда. Если сосуд небольшой — литров на 5–6, то стеклянные осколки от взрыва, который последует немедленно после того, как водород и хлор будут смешаны, разлетятся недалеко — метров на 10–12. Чем больше сосуд, тем на большем расстоянии будут сохранять стеклянные осколки убойную силу.

Итак, вы, конечно, поняли, что реакцию водорода с хлором можно проводить, лишь соблюдая многие предосторожности. Но самое главное, чтобы на реакционную смесь ненароком не попал луч света. В темноте же — спокойно смешивайте эти газы — реакция не пойдет.

Взаимодействие водорода с хлором — далеко не единственный пример реакций, протекающих под действием света. Каждый химик без труда вспомнит много таких реакций: разложение соединений серебра с галогенами (процесс, лежащий в основе фотографии), хлорирование многих органических соединений, наконец, важнейший из химических процессов, протекающих в природе, — процесс фотосинтеза, свершающееся в глубинах растительных клеток превращение углекислоты и воды в углеводы, процесс, на котором основано существование всего живого на нашей планете.

Ничего загадочного в действии света на эти реакции нет. Вот хотя бы та же реакция взаимодействия водорода с хлором.

Оба этих газа двухатомны — молекулы их содержат по два атома: H2 и Cl2. Именно поэтому взаимодействовать друг с другом они не собираются: водород прочно соединен с другим атомом водорода, и в молекуле хлора оба атома вполне довольны друг дружкой.

Но вот в смесь этих газов попал квант света. Натолкнувшись на молекулу хлора, он разбивает ее на части — два отдельных атома Cl, каждый из которых, не имея партнера, обладает большим стремлением к взаимодействию. Поэтому такие одиночные атомы хлора буквально «вгрызаются» в молекулы водорода: Cl + H2 = HCl + H. Теперь уже бесприютным остался атом водорода, стремящийся приобрести себе партнера еще сильнее, чем одиночный атом хлора. Водород-одиночка находит приятеля в первой же молекуле хлора, которая столкнется с ним: H + Cl2 = HCl + Cl. И снова остался без пары атом хлора, который реагирует с молекулой водорода. И так далее. И так далее. И так далее… 150 тысяч раз. Потому что один квант света, попавший в смесь водорода и хлора, может привести к образованию 150 000 молекул хлористого водорода.

Понятно теперь, почему не стоит выставлять без соблюдения всех правил предосторожности на свет смесь H2 и Cl2?

Как ни многообразны реакции, протекающие под действием света, число их не сопоставимо с количеством известных нам химических соединений. Это понятно, так как энергия, которую несет на себе квант видимого света, сравнительно невелика. Этот квант может воздействовать на молекулу лишь с довольно слабой химической связью. Кванты видимого света можно сравнить с теннисными мячиками, ударяющимися о каменную стенку. Повредить штукатурку они еще могут, да и то, если она плохо заделана. Но большого вреда, конечно же, не нанесут.

Другое дело, если по стене стрелять из винтовки или даже артиллерийского орудия. Так вот, если кванты видимого света — мячики, то кванты рентгеновского или радиоактивного излучения — пули и артиллерийские снаряды.

Сравнение радиоактивного излучения с пулями и снарядами, надо сказать, весьма емкое. Альфа-частицы или гамма-кванты, попадая в молекулу химического соединения, причиняют ей тяжелейшие разрушения. Молекула попросту разлетается на осколки, которые сами по себе уже являются новыми соединениями. Кроме того, осколки охотно вступают во взаимодействие друг с другом, что еще больше расширяет круг образующихся при этом соединений.

Поделиться:
Популярные книги

Ненаглядная жена его светлости

Зика Натаэль
Любовные романы:
любовно-фантастические романы
6.23
рейтинг книги
Ненаглядная жена его светлости

Кодекс Крови. Книга IХ

Борзых М.
9. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга IХ

В теле пацана 6

Павлов Игорь Васильевич
6. Великое плато Вита
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
В теле пацана 6

Кодекс Охотника. Книга XV

Винокуров Юрий
15. Кодекс Охотника
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XV

Брак по-драконьи

Ардова Алиса
Фантастика:
фэнтези
8.60
рейтинг книги
Брак по-драконьи

Горькие ягодки

Вайз Мариэлла
Любовные романы:
современные любовные романы
7.44
рейтинг книги
Горькие ягодки

Идеальный мир для Лекаря 6

Сапфир Олег
6. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 6

Эксперимент

Юнина Наталья
Любовные романы:
современные любовные романы
4.00
рейтинг книги
Эксперимент

В теле пацана

Павлов Игорь Васильевич
1. Великое плато Вита
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
В теле пацана

Кодекс Крови. Книга III

Борзых М.
3. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга III

Шестое правило дворянина

Герда Александр
6. Истинный дворянин
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Шестое правило дворянина

Третий. Том 3

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
Третий. Том 3

Боги, пиво и дурак. Том 3

Горина Юлия Николаевна
3. Боги, пиво и дурак
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Боги, пиво и дурак. Том 3

Live-rpg. эволюция-4

Кронос Александр
4. Эволюция. Live-RPG
Фантастика:
боевая фантастика
7.92
рейтинг книги
Live-rpg. эволюция-4