Такое разное будущее: Астронавты. Магелланово облако. Рукопись, найденная в ванне. Возвращение со звезд. Футурологический конгресс (сборник)
Шрифт:
Председатель умолк на мгновение. Фиолетовый рассвет заглядывал в окна. Вдали, за городом, видимым с высоты башни, разгорался ленивым сумрачно-рубиновым светом восточный край горизонта.
– Сейчас я прочту имена коллег, которых попрошу остаться в этом зале; мы должны немедленно приступить к подготовке отчета о нашей работе, который завтра – вернее, сегодня, ибо новый день уже занялся, – необходимо представить в Высший научный совет. До этого я попрошу вас еще об одном. Возможно, будет принято решение послать на Венеру межпланетный корабль, первоначально предназначавшийся для полета на Марс. Так вот, мне хотелось бы знать, кто из присутствующих готов принять участие в этой экспедиции.
Послышался шум, перешедший в глухой рокот. Ученые, словно по уговору, не воспользовавшись аппаратами для голосования, отодвинули кресла и поднялись ряд за рядом, стол за столом, напряженно глядя на председателя, и весь зал,
Под этими взглядами председатель тоже поднялся и теперь переводил глаза с одного ученого на другого, поражаясь тому, как все – старые и молодые, – охваченные одним и тем же порывом, стали в эту минуту похожи друг на друга. Губы у него чуть заметно задрожали.
– Я так и знал, – прошептал он. И, выпрямившись, чтобы достойно взглянуть в глаза всем этим людям, громко произнес: – Благодарю вас, коллеги!
Он отвернулся, словно ища кого-то позади себя, но там никого не было. Только слабый отсвет уходящей ночи струился в высокие окна. Председатель подошел к столу, поднял обеими руками тяжелую книгу, в которой велась запись желавших выступить, и сказал:
– На этом последнее собрание Комитета переводчиков считаю закрытым.
Ученые выходили из зала, задерживаясь в проходах между рядами кресел. Повсюду возникали оживленно беседующие группы. Вокруг стола председателя собрались лишь те, кто должен был готовить отчет. Наконец зал опустел, и последний из уходивших погасил свет.
В наступившей тьме на горизонте алела заря. Тучи, низкие и тяжелые, разошлись. На темно-синем небе запылала белая точка – звезда, такая ясная и сильная, что от оконных переплетов упали в глубь зала слабые тени, а ряды пустых кресел и столов стали видны в сероватом отблеске. Это была Венера, предвестница Солнца. Потом края туч, которых коснулось золотое пламя, ярко вспыхнули. Неподвижная искра все бледнела и бледнела, пока не исчезла в ослепительном блеске нового дня.
11,2 километра в секунду
Мысль о путешествии к звездам почти так же стара, как и само человечество. Человек первый из живых существ отважился взглянуть, запрокинув голову, в необъятную ширь, простиравшуюся над ним каждую ночь. В древнейших религиозных мифах и преданиях мы находим рассказы о летающих огненных колесницах и о героях, которые ими управляли. Люди старались разгадать тайны полета, которыми в совершенстве владеют птицы. Но прошли долгие столетия, прежде чем впервые поднялась в воздух летательная машина – беззащитный еще против ветров, слепой, не поддающийся управлению монгольфьер, наполненный нагретым воздухом.
В XVIII веке философы, писавшие аллегорические нравоучительные рассказы, отправляли иногда своих героев на звезды, пользуясь для этого воздушным шаром как средством передвижения. Но и позже, когда шар более легкий, чем воздух, был вытеснен аппаратом тяжелее воздуха – самолетом, человек убедился, что и он все еще далек от совершенства в передвижении во всех измерениях пространства. Летательные аппараты могли летать только там, где была достаточно плотная атмосфера. Воздушные корабли должны были кружить низко над Землей, на самом дне воздушного океана, окутывавшего нашу планету более чем двухсоткилометровым слоем.
До того как в конце XIX века зародилась астронавтика, наука о межпланетных путешествиях, писатели-фантасты, а среди них самый замечательный – Жюль Верн, отправляли своих героев в мировое пространство с помощью снаряда, выпущенного из гигантской пушки. Однако даже при поверхностных расчетах становится ясно, что это невозможно. Причин для этого три. Прежде всего, чтобы оторваться от Земли, тело должно развить скорость не менее 11,2 километра в секунду, или сорок тысяч триста двадцать километров в час, тогда как в результате взрыва даже самых лучших взрывчатых веществ газы распространяются со скоростью не выше трех километров в секунду. Выпущенный из пушки снаряд должен будет, поднявшись на определенную высоту, неминуемо упасть обратно на Землю. Помочь нельзя ничем: ни удлинением канала ствола, ни увеличением количества взрывчатки. Во-вторых, страшное ускорение, действующее на путешественников в момент выстрела, раздавило бы их насмерть. Чтобы понять, насколько огромны его размеры, достаточно представить себе, что в момент выстрела дно снаряда ударит путешественников с силой гранаты, попадающей в цель. Наконец, в-третьих, если бы даже людям, находящимся в снаряде, удалось каким-нибудь чудом уцелеть при выстреле и если бы, вразрез с законами механики, снаряд не упал на Землю, то при падении на Луну он должен был бы разлететься на куски.
Чтобы преодолеть притяжение Земли и в то же время освободиться от влияния атмосферы, дающей опору крыльям самолетов, понадобилось изобретение, которое поистине совершило переворот. Додумались до него очень давно. Уже приблизительно в 1300 году нашей эры китайцы запускали первые ракеты, движимые силой пороховых газов. Однако должно было пройти еще около шестисот лет, пока русский ученый Циолковский впервые начертил план межпланетного корабля. Вслед за ним появились Годдар, Оберт и многие другие. Они заложили фундамент астронавтики, которая разрослась со временем в самостоятельную отрасль техники.
Принцип движения был ясен. Он основывался на известном законе Ньютона, по которому действие равно противодействию. Ракета должна была иметь запас горючего, превращающегося в струю газов с большой скоростью истечения. Сила реакции толкала ракету в противоположную сторону. Здесь, однако, конструкторов поджидала первая трудность. При самой бурной из всех химических реакций – соединении кислорода с водородом – взрывные газы получают скорость пять километров в секунду. До скорости 11,2 километра в секунду, которую называют отрывной, еще далеко. К тому же эту скорость нужно сообщить телу, движущемуся свободно, – например, выстреленному снаряду. Ракета – другое дело. Она может взлететь с Земли со скоростью и меньше отрывной, при условии, что ее двигатель будет работать непрерывно до той минуты, пока она отдалится от Земли на значительное расстояние. Однако такое решение не может удовлетворять. Кислородно-водородным горючим, казалось бы, самым совершенным, не пользовались никогда, так как эти газы трудно сжимаются, а применять их в жидком виде затруднительно и небезопасно. Кроме того, очень высокая температура реакции быстро разрушает двигатель. Поэтому пришлось применять виды горючего, выбрасывающего газовую струю со скоростью всего лишь один – три километра в секунду. Но в таких условиях вес горючего, которое необходимо затратить для освобождения от земного притяжения, должен в несколько сотен раз превышать вес самой ракеты. Даже если бы удалось использовать наиболее эффективное кислородно-водородное горючее, ракета, весящая десять тонн и несущая десять тонн груза, должна была бы взять для полета от Земли до Луны сорок тысяч тонн горючего. Это была бы громада величиной с большой трансатлантический пароход, и притом с чрезвычайно тонкими стенками – попросту говоря, огромных размеров резервуар с крошечной, на самом кончике его, каютой для пассажиров. Управлять таким аппаратом чрезвычайно трудно, так как его устойчивость изменяется по мере убывания горючего, а к концу пути такая ракета превратится в огромную пустую скорлупу.
Уже одно это говорит о несовершенстве такого аппарата, но и этот недостаток далеко не единственный. Даже такое невыгодное соотношение между весом горючего и полезным весом, которое получается при использовании кислородно-водородного горючего, является недостижимым идеалом. Из-за других трудностей в камере сгорания во время работы возникает температура приблизительно в три тысячи градусов, при которой самые жароупорные сплавы размягчаются в несколько минут, а если температуру понизить, то скорость истечения газов падает. Для конструкторов получился замкнутый круг. На поиски новых видов горючего ушли целые годы. Пробовали дать ракетам движение с помощью аммиака и окиси азота, пироксилина, смесей бензина с кислородом, анилина с азотной кислотой, спирта с перекисью водорода, даже с помощью твердых тел, например, угля, алюминия и магния, вдуваемых в пылевидном состоянии в струю чистого кислорода. Не было недостатка и в способах, вызывавших недоумение, как, например, способ Гоманна. Этот ученый предлагал поместить каюту пилота в виде конуса на вершине большого цилиндра, состоящего из твердого пороха; подожженный снизу, порох сгорал бы равномерно, создавая движущую силу. В этот период первых опытов, ошибок и упорных поисков инженеры все яснее отдавали себе отчет в том, что современная им наука еще не в состоянии решить проблемы астронавтики. Мощность двигателей крупнейших самолетов и даже кораблей была до смешного мала в сравнении с мощностью, необходимой для борьбы с земным притяжением. Одной из первых ракет, способных преодолеть большое расстояние, была так называемая «Фау-2», сконструированная немцами во время Второй мировой войны. Снаряд этот – стальная сигара длиной около десяти метров – имел в носовой части тонну взрывчатки. Вся цилиндрическая часть его корпуса была заполнена горючим – спиртом и жидким кислородом. Там же помещались топливные насосы и камера сгорания. Этот снаряд весил около тринадцати тонн, из которых девять приходились на горючее. Такой запас позволял двигателю проработать одну минуту. Ракета, развивавшая к этому времени мощность в шестьсот тысяч лошадиных сил, могла при вертикальном полете подняться на высоту двухсот с лишним километров – высоту незначительную по сравнению хотя бы с радиусом земного шара, превышающим шесть тысяч километров. Строить ракеты для межпланетных путешествий по этому принципу было невозможно.