Технология хранения и обработки больших данных Hadoop
Шрифт:
Модель MapReduce следует принципам функционального программирования, вследствие чего пользовательские вычисления выполняются как функции map и reduce, обрабатывающие данные в виде пар ключ-значение.
Hadoop предоставляет высокоуровневый программный интерфейс для реализации пользовательских функций map и reduce на различных языках.
Также Hadoop предоставляет инфраструктуру для выполнения заданий MapReduce в виде серий задач map и reduce.
Задачи map вызывают функции map для обработки наборов входных данных.
Затем задачи reduce вызывают функции reduce для обработки промежуточных
Задачи map и reduce выполняются изолированно друг от друга, что обеспечивает параллельность и отказоустойчивость вычислений.
Hadoop версии 1 содержал компоненты HDFS и Map Reduce.
И Hadoop версии 1 разрабатывался только для выполнения заданий MapReduce.
А Hadoop версии 2 уже содержит компоненты HDFS и YARN/Map Reduce версии 2.
В классическом Map Reduce, когда мастер узел перестает работать, тогда все его узлы slave автоматически перестают работать.
И мы должны перезапустить весь кластер и заново начать выполнять работу.
Это единственный сценарий, когда выполнение работы может прерваться, и это создает единственную точку отказа.
Компонент YARN или Yet Another Resource Negotiator решает эту проблему благодаря своей архитектуре.
YARN основывается на концепции нескольких мастер узлов и нескольких подчиненных slave узлов, и если один мастер узел выйдет из строя, тогда другой мастер узел возобновит процесс и продолжит выполнение.
Классический Map Reduce отвечает как за управление ресурсами, так и за обработку данных.
В Hadoop версии 2, YARN разделяет функций управления ресурсами и планирования/мониторинга заданий на отдельные демоны.
YARN – это универсальная платформа для запуска любого распределенного приложения, и здесь Map Reduce – это распределенное приложение, которое работает поверх YARN.
Таким образом, YARN отвечает за управление ресурсами, то есть решает, какая работа будет выполняться и какой системой.
Тогда как Map Reduce является фреймворком программирования, который отвечает за то, как выполнить конкретную работу, используя два компонента mapper и reducer.
YARN отделяет компоненты управления ресурсами от компонентов обработки, и YARN не сводится только к MapReduce.
Диспетчер ресурсов resource manager YARN оптимизирует использование кластера и поддерживает другие рабочие процессы, кроме Map Reduce.
Поэтому здесь мы можем добавлять дополнительные программные модели, такие как обработка графов или итеративное моделирование, которые могут обрабатывать данные, используя те же кластеры и общие ресурсы.
Поверх HDFS
Давайте посмотрим на историю и посмотрим, как вся эта экосистема Hadoop развивалась и росла со временем.
Как вы можете заметить, у многих из этих приложений смешные имена.
Как мы можем понять весь этот зоопарк, и как мы можем понять, что делает каждое из этих приложений?
Проект Hadoop возник из концепции Google MapReduce и идеи о том, как можно обрабатывать очень большие объемы данных.
Здесь показан стек Google Big Data.
И он начинается с файловой системы Google GFS.
В Google подумали, что будет хорошей идеей использовать большое количество распределенного дешевого хранилища, и попытаться разместить там много данных.
И придумать какой-то фреймворк, который позволил бы обрабатывать все эти данные.
Таким образом, у Google появился свой оригинальный MapReduce, и они хранили и обрабатывали большие объемы данных.
Затем в Google сказали, что это действительно здорово, но нам бы очень хотелось иметь доступ к этим данным и обращаться к ним на языке, похожем на SQL.
Поэтому они создали шлюз MySQL Gateway, чтобы адаптировать данные в кластере MapReduce и иметь возможность запрашивать эти данных.
Затем они поняли, что им нужен специальный язык высокого уровня для доступа к MapReduce в кластере и отправки работы.
Так появился Sawzall.
Затем появился Evenflow и позволил связывать воедино сложные рабочие нагрузки и координировать сервисы и события.
Затем появился Дремель. Dremel – это хранилище и менеджер метаданных, который позволяет управлять данными и обрабатывать очень большой объем неструктурированных данных.
И затем, конечно, вам нужно что-то, чтобы координировать все это между собой.
Так появился Chubby в качестве системы координации, которая управляет всеми продуктами в этой экосистеме, обрабатывающей большие объемы данных.
Здесь показан стек Facebook Big Data.
И мы видим, что стек Facebook выглядит очень похожим.
Здесь есть Zookeeper, аналог Chubby, цель которого хранение и управление конфигурациями систем.
Здесь есть HBase, и таблицы в HBase служат входом и выходом для работы MapReduce.
И здесь Hive и Databee, которые обеспечивает SQL запросы.
И есть Scribe, который используется для агрегации лог данных, передаваемых в режиме реального времени с большого количества серверов.