Тёмная миссия. Секретная история NASA
Шрифт:
Изначально этот избыток энергии может проявляться в различных формах — в виде сильного ветра, необычной электрической активности, даже в виде усиленной ядерной реакции — однако в конце концов он превратится в простой избыток тепла. Из- за основного физического условия резонанса вращения трехмерной массы фактически соединенных планет (звезд) и базового четырехмерного вращения эфира эта выработка избытка энергии должна с течением времени варьироваться, когда меняющаяся орбитальная геометрия «спутников» и основных членов Солнечной системы взаимодействует с первичным спином (и изначальным вихревым эфиром) в фазе и вне ее. По этой причине зависимость от времени этого продолжающегося обмена энергией должна быть главным критерием всего гиперпространственного процесса. Она также должна быть легко определяемой. Все это нужно для измерения мощности инфракрасного излучения Юпитера в различные промежутки времени его прохождения по орбите
История науки насчитывает несколько попыток сделать это. В 1966 и 1969 годах д–р Фрэнк Дж. Лоу с высотного летательного аппарата сделал первые наблюдения аномальной теплопроизводительности Юпитера. Лоу, которого считают отцом современной инфракрасной астрономии, опубликовал первые результаты, показавшие, что теплопроизводительность Юпитера находится в диапазоне 3–1. Позднее он сделал предположение, которое привело к созданию IRAS, первых инфракрасных космических телескопов, с помощью которых и были сделаны наблюдения, позволившие предположить существование Планеты X в Орионе, о которой шла речь ранее. Три года спустя Лоу произвел дальнейшие наблюдения, которые снизили цифру с 3–1 до 21 — разница более чем на 30%, что далеко выходит за пределы допустимой погрешности приборов, использовавшихся в обоих случаях. В 70–х при помощи наземных телескопов цифра была уменьшена еще больше, до соотношения примерно 1,67–1,00, т. е. еще на 30%. В начале 80–х миссия «Вояжер» в значительной степени подтвердила цифру 1,67. Разночтения данных объяснялись тем, что инструменты были недоработаны, а их показания — приблизительны. Поскольку колебания по данным теплопроизводительности в конце 70–х и начале 80–х в конце концов остановились на цифре 1,67, все решили, что это и есть точное значение, а предыдущие результаты были аннулированы.
К счастью, после «Вояжера» во внешней области Солнечной системы проводились исследования аппаратами «Галилей» и «Кассини», на которых было оборудование для измерения инфракрасного излучения внешних планет–газовых гигантов. Единственное, что удерживало Хогленда от тестирования этого аспекта модели, была невозможность найти того, кто провел бы измерения, или того, кто опубликовал бы их результаты. Оказалось, что это гораздо более трудная задача, чем можно было предположить. Обращение в университеты, собиравшие и архивировавшие данные инфракрасных исследований обоих космических аппаратов, обнаружило их явное нежелание сотрудничать. Хогленду сказали, что для получения данных для измерений он должен «подтвердить» свое членство в «одобренном» научном центре или университете. Однако поиск в астрофизической реферативной онлайн–базе данных НАСА дает кое–какую интересную информацию. Последний документ — наблюдения, сделанные композитным инфракрасным спектрометром (CIRS) аппарата «Кассини», вероятно, подтверждают прогноз Хогленда. Группа исследователей обнаружила, что инфракрасное излучение Юпитера не соответствует каноническому со времен «Вояжера» соотношению от 1,67 до 1,00. Поскольку точных данных нет, выдержка сообщает, что «об экваториальном температурном минимуме больше говорили, чем наблюдали его», и что «с большей вероятностью это связано с временными изменениями экваториальных стратосферных температур, о чем сообщается из наземных обсерваторий». Получается, Юпитер не просто демонстрирует переменную теплопроизводительность, что согласуется с моделью Хогленда. Последнее предложение указывает на то, что наземные наблюдения дали тот же результат.
Даже если не заходить уж очень далеко и не запрашивать самые последние инфракрасные снимки Юпитера и других внешних планет, все равно эти результаты являются аномальными для общепринятых моделей, но согласуются с ключевым гиперпространственным прогнозом Хогленда. К сожалению, нам придется подождать публикации данных, прежде чем мы уверенно отнесем этот прогноз к категории «подтвержденных».
Краткосрочные изменения амплитуды
Этот же аспект модели, но в меньшем масштабе, может использоваться и для того, чтобы сделать еще один прогноз. В нашей Солнечной системе все планеты — «гиганты» имеют настоящий эскорт, состоящий из дюжины спутников: один или два главных (размером примерно как планета Меркурий) и нескольких других, меньше нашей Луны по массе и диаметру, а также множество живых объектов. Из- за «эффекта рычага» в расчетах вращательного момента маленький спутник, движущийся по далекой орбите (или под крутым углом относительно плоскости вращения планеты), может оказывать непропорциональное влияние на уравнение «общего вращательного момента» достаточно взглянуть на Плутон и Солнце.
Даже сейчас четыре основных спутника Юпитера (общая масса которых составляет около 1/10000 массы самого Юпитера) во время цикла сложного взаимодействия на орбите, как известно, вызывают изменяющееся во времени поведение ряда хорошо известных феноменов Юпитера — включая «аномальные» перемещения Большого красного пятна по широте и долготе.
Как сообщил в ООН в 1992 году Хогленд, Большое красное пятно (GRS) - загадочный вихрь, более 300 лет наблюдающийся на пресловутых 19,5° южной широты с точки зрения геометрии вписанного тетраэдра и проблемы двадцати семи линий — это классический «признак» действия гиперпространственной физики в пределах Юпитера (ниже).
Десятилетия наблюдений за аномальными перемещениями этого Пятна, точно синхронизированными с вполне предсказуемыми движениями самых больших лун Юпитера, открытых Галилеем, ясно указывают, что эти перемещения не являются результатом обычных гравитационных или приливно–отливных взаимодействий, учитывая относительно небольшие массы лун в сравнении с самим Юпитером. Правильнее сказать, они, по всей вероятности, следуют моделям Максвелла, Шустера и Уиттекера. Это результат мощной гиперпространственной модуляции от изменяющейся геометрической конфигурации этих спутников. Это длинный рычаг вращательного момента и гармонический торсионный резонанс постоянно изменяющейся вихревой напряженности (состояние торсионных полей) в недрах Юпитера, который вызывает изменения Большого красного пятна.
Итак, гиперпространственный тест номер три: найти небольшие, кратковременные амплитудные колебания уровней инфракрасного излучения всех планет–гигантов, синхронизированные (как атмосферные движения Большого красного пятна на Юпитере, по–прежнему загадочные, однако явно носящие циклический характер) с движением лун по орбитам и их пересечением, и/или движением этих внешних планет относительно других основных членов Солнечной системы.
Подтверждение наличия кратковременных колебаний в выработке инфракрасного излучения на протяжении нескольких часов (или даже дней) - синхронизированных с периодами обращения спутников планет — было бы прекрасным примером того, что все общепринятые объяснения находятся в затруднении, а гиперпространственная модель заслуживает более подробного рассмотрения. Увеличение или уменьшение выработки в течение нескольких лет и десятилетий (как следует из истории наблюдений инфракрасного излучения Юпитера, от Фрэнка Лоу до Кассини) поддержало бы долговременную планетарную модуляцию этого внутреннего высвобождения гиперпространственной энергии. Конечно же, на самом деле обе совокупности модуляций должны происходить одновременно — и которые при наблюдении легко разделить при помощи компьютерный программы наблюдений при условии, что кто- то попытается это сделать.
Такие меняющиеся взаимодействующие напряженности на границе гиперпространства и «обычного» космоса (в гиперпространственной модели), вероятно, могли бы дать объяснение загадочным «штормам», которые время от времени внезапно возникают и пропадают в атмосферах нескольких внешних планет. Одним из ярких примеров является сокращение и практическое исчезновение Большого красного пятна на Юпитере в конце 80- х; еще один пример — внезапное появление на Сатурне «события» планетарного масштаба, сфотографированного космическим телескопом «Хаббл» в 1994–м — сверкающего облака, выброс которого произошел на 19,5° северной широты (где же еще?); еще один — ураган «19,5» на Юпитере Большое темное пятно — «сейчас видно, потом — нет».
И еще одна, самая последняя загадка Солнечной системы, ставящая в тупик теоретиков из НАСА, внезапное формирование второго красного пятна, прозванного «Младшее», на Юпитере в 2006 году. Этот огромный (размером с нашу планету) атмосферный вихрь в течение трех недель был образован слиянием трех малых вихрей (каждый размером с Марс) и затем также начал превращаться в «красное, как Большое красное пятно», НАСА же, как известно, не имеет представления (что для него является обычным) о том, что же на самом деле происходит…
Поскольку в НАСА превалирует мнение о том, что избыток инфракрасного излучения, вырабатываемого планетой, все время должен быть постоянным, никто не стал утруждаться поиском взаимосвязи между подъемом или спадом излучения внутренней энергии и (как теперь доказано и документально подтверждено) полупериодичностью возникновения этих «штормов». Хотя это следовало бы сделать.
Представление о том, что изменяющаяся конфигурация членов систем планет (или звезд) в сравнении с «первичной» может влиять на их общую выработку энергии, является революционным для современного образа мыслей, однако далеко не беспрецедентным.