Теоретические основы и практические аспекты высокоинтенсивной интервальной тренировки
Шрифт:
Таблица 2.1 – Изменение представлений о лактате, его роли и функциях
Адаптация
Смене концепции понимания роли лактата способствовал ряд работ, посвященных изучению внутри- и межклеточных систем переноса этого соединения (Gladden, L.B., 2004). Использование современных биохимических, иммунногистохимических, радиоизотопных и других методов позволило доказать существование механизма восстановления лактата до гликогена – внутриклеточного лактатного шаттла (intracellular lactate shuttle) (G. A. Brooks, 2018), с помощью которого лактат экзо-, а также эндогенного происхождения способен транспортироваться в митохондрии клеток скелетных мышц, сердца и нейронов и там подвергаться окислению. Отдельные детали этих механизмов в настоящее время еще являются предметом дискуссий, но общие принципы теперь ясны, и эти принципы имеют важное значение для оптимизации спортивной подготовки, прежде всего, в видах на выносливость.
Сегодня лактат уже не рассматривается как «побочный» или «вредный» продукт гликолиза. Результаты исследований показали, что окисление лактата является одним из самых важных источников энергии: в окислительных мышечных волокнах лактат является предпочтительным источником топлива (Brooks G. A., 1986). Было четко продемонстрировано, что межклеточный транспорт лактата осуществляется с помощью специальных белков-транспортеров – монокарбоксилатных переносчиков (monocarboxylate transporters – MCTs) (рисунок 2.5). Среди 14 идентифицированных изоформ MCT две – MCT1 и MCT4 – присутствуют в плазматических мембранах скелетных мышц, выявлена их связь с физической нагрузкой: физические упражнения увеличивают концентрацию в скелетных мышцах как MCT1, так и MCT4 (Kitaoka Y. et al, 2012).
В настоящее время доказано существование митохондриальной ЛДГ, а также белков-транспортеров лактата не только на клеточных, но и на митохондриальных мембранах (Hashimoto, Brooks, 2008; Hashimoto et all., 2008; Lemire et all., 2008).
Установлено, что окисление лактата в митохондриях осуществляется митохондриальным лактат-окисляющим комплексом (mLOC) (рисунок 2.6): существование этого комплекса было доказано для клеток скелетных мышц (Hashimoto T. et all., 2006; Hashimoto T., Brooks G., 2008).
Рисунок 2.5. Схематическое представление межклеточного лактатного челнока и функций МСТ-переносчиков (Draoui and Feron, 2011). Лактат, продуцируемый в гликолитических волокнах, выделяется во внеклеточное пространство и в кровь посредством MCT4, а затем переносится в окислительные волокна посредством MCT1; После этого он превращается в
Рисунок 2.6. Структура митохондриального лактат-окисляющего комплекса (T. Hashimoto et all., 2006). Схема, показывающая митохондриальный комплекс окисления лактата (mLOC): MCT1 «встроен» во внутреннюю мембрану митохондрии, тесно взаимодействуя с шапероновым белком CD147, и также связан с цитохром оксидазой (Cox) и с митохондриальной LDH (mLDH), расположенной на внешней стороне внутренней мембраны митохондрии. Лактат, который вырабатывается в цитозоле мышц, окисляется до пирувата через комплекс окисления лактата в митохондриях той же клетки. Сокращения: GP, глицеринфосфат; Mal-Asp, малат-аспартат; ETC, электрон-транспортная цепь; MCT, переносчик монокарбоксилата (лактата); mPC, митохондриальный переносчик пирувата; mLDH, митохондриальная лактатдегидрогеназа; TCA, цикл трикарбоновых кислот
Выявлено также, что превращение лактата в пируват и из пирувата регулируется специфическими изоформами лактатдегидрогеназы, тем самым обеспечивая образование высоко адаптируемой метаболической промежуточной системы. Относительно новой концепцией, вытекающей из комбинации сравнительных исследований, является концепция лактата, действующего как сигнальное соединение («лактормон»). В ряде работ показано, что лактат является главным глюконеогенным предшественником, а также сигнальной молекулой, которая обеспечивает адаптацию, вызванную физической нагрузкой (M. Nalbandian, 2016 и др.).
R. A. Robergs et al. (2004) убедительно показал, что производство лактата (особенно если оно сопровождается высокой способностью к удалению лактата) может с большей вероятностью отсрочить начало ацидоза. Существует также немало научных данных, свидетельствующих о том, что ацидоз вызван реакциями, отличными от выработки лактата. Развитие утомления в целом имеет комплексную природу, обусловленную изменением концентрации различных метаболитов и ионов, изменением величины мембранных потенциалов и возбудимости. Накопление лактата – скорее следствие, а не причина внутриклеточных условий, способствующих ацидозу. Сам лактат никак не ограничивает работоспособность, более того, увеличивает ее (Robergs et al., 2004). Вместе с тем, изменение концентрации лактата прямым или косвенным образом связано с выраженной интенсификацией гликолиза, коррелирует со снижением работоспособности, и это делает данный показатель биомаркером состояния спортсмена, одним из индикаторов интенсивности выполняемых упражнений, и определение его содержания в процессе занятий – один из важнейших методов оперативного управления нагрузкой.
Результатами исследований показано, что тренировочные нагрузки стимулируют адаптивный метаболизм спортсменов, повышая мощность механизмов ресинтеза гликогена в скелетных мышцах. В этой связи важна возможность быстрого транспорта лактата, а, значит, совершенствования за счет тренировки механизмов этого транспорта, в первую очередь, системы монокарбоксилатных белков-транспортеров (МСТ). Это, в свою очередь, требует обоснования и разработки соответствующих режимов и методов тренировки, обобщения с позиций доказательного знания и трансформации результатов экспериментальных исследований в актуальный для практики спортивной подготовки формат методических рекомендаций.
Конец ознакомительного фрагмента.