Чтение онлайн

на главную - закладки

Жанры

Теория игр в комиксах
Шрифт:

Игры с одновременными ходами

Часто так случается, что в момент принятия собственного решения игрок не знает, какое действие предпримет соперник. Подобные игры называются играми с одновременными ходами. Иногда игроки принимают решения буквально синхронно, а бывает, проходит какое-то время, но покуда соперники в момент принятия их собственного решения не знают, какой ход выбран другим игроком, мы можем называть их одновременными.

Рассмотрим пример. Кинокомпания Rabbit films сняла захватывающий рождественский фильм о супергероях. Эта лента может быть выпущена в прокат либо в октябре, либо в декабре.

Один из крупнейших конкурентов Rabbit films,

кинокомпания Weasel studios, сняла ужасный фильм с огромным бюджетом. По сюжету главные герои этого фильма влюблены друг в друга, но плохая игра актеров не скрывает их взаимной неприязни. Weasel studios также может выпустить фильм в прокат в октябре или в декабре.

Люди чаще ходят в кино в декабре, чем в октябре, поэтому для обеих студий желателен выпуск фильма в декабре. Но оба фильма нацелены на одну аудиторию. Если они появятся в прокате в одно и то же время, то компаниям всеми правдами и неправдами придется бороться за зрителей.

Доход каждой студии зависит не только от даты выхода своего фильма в прокат, но и от даты выхода фильма студии-конкурента. Соответственно, между компаниями наблюдается стратегическое взаимодействие. Выигрыш, который одна студия получит благодаря выбору даты релиза, будет зависеть от выбора соперника.

Стратегическая форма игры

Мы можем проанализировать эту игру, записав возможные действия игроков (релиз фильма в октябре или декабре) и выигрыши (доходы) в таблицу под названием стратегическая (нормальная) форма игры. Стратегическая форма игры – это таблица, известная также как платежная матрица.

В каждом из двух рядов записан один возможный выбор Rabbit films (октябрь или декабрь), а в каждой колонке записаны возможные выборы Weasel studios. На пересечении каждого ряда и колонки указаны выигрыши каждого игрока: в этом примере под выигрышами понимаются доходы студии.

Эта матрица представляет все возможные исходы игры и указывает, что каждый участник получил бы в качестве выигрыша в каждой конкретной ситуации. Обе киностудии понимают, как работает платежная матрица, и знают, что имеют дело с одной и той же матрицей.

Выигрыши

В каждой конкретной ситуации под выигрышем будет пониматься что-то свое в зависимости от исследуемой проблемы. В примере с релизами фильмов выигрышем являются те многомиллионные доходы, которые с помощью этих фильмов заработали бы студии при любом из возможных исходов.

В иных случаях выигрыши будут иметь другие значения. В биологии выигрышами часто называют приспособленность животного. В экономике, социологии и других науках выигрыш понимается как относительное «благосостояние» или «полезность» участников.

Может показаться странным, что мы связываем с числовыми показателями

понятия благосостояния и приспособленности животного. Однако на решения игроков влияют не столько сами числа, сколько то, как эти числа соотносятся.

Для стратегического взаимодействия двух студий важны лишь их предпочтения относительно исхода. Нам важно знать лишь то, какие результаты лучше, а какие хуже для каждого из участников. Числа – это просто удобный способ представления этих предпочтений.

Конечно, существует множество значимых ситуаций, в которых людям важны не только свои собственные выигрыши, но и чужие. Друзья и члены семьи, как правило, стараются радовать друг друга, а пары в состоянии развода и деловые конкуренты могут быть не против причинить друг другу неприятности.

Подобные ситуации легко поддаются анализу с помощью теории игр: записывая потенциальные выигрыши, мы учитываем все желания участников, включая и желания, связанные с личной выгодой, и желание помочь или навредить другим. Значащиеся в таблице числа – это итоговый выигрыш, который каждый из игроков получит при любом из исходов: так, выгода, которую участник способен извлечь, может быть прямой или непрямой (например, если он причинит вред или поможет кому-либо). Таким образом, выигрыш учитывает все, что для человека важно.

Соответственно, в игре стратегической формы каждый игрок заинтересован лишь в увеличении своих выигрышей.

Равновесие Нэша

Теперь, когда мы уточнили условия игры, записав ее в стратегической форме, можем перейти к возможным последующим событиям.

Равновесие Нэша – это фундаментальная концепция в теории игр, названная в честь американского математика Джона Нэша (1928–2015). Само понятие математического равновесия было придумано задолго до Нэша, но он был первым, кто приложил его к математическому анализу игр в общем, а не только к отдельным примерам, как делали раньше.

Идея равновесия Нэша и достаточно проста, и эффективна одновременно: в ситуации равновесия каждый рациональный игрок выбирает свою оптимальную стратегию, учитывая, что другой игрок также придерживается определенной стратегии. То есть участник выбирает стратегию в зависимости от действий оппонента.

Оптимальная стратегия Rabbit films

• Если Rabbit films ожидает, что Weasel Studios выпустит фильм в октябре, то их оптимальной стратегией будет выпуск фильма в декабре, так как R:120 > R:50. Подчеркиваем R:120.

• Если Rabbit films ожидает, что Weasel Studios выпустит фильм в декабре, то их оптимальной стратегией будет выпуск фильма в декабре, так как R:90 > R:70. Подчеркиваем R:90.

Оптимальная стратегия Weasel studios

• Если Weasel Studios ожидает, что Rabbit films выпустит фильм в октябре, то их оптимальной стратегией будет выпуск фильма в декабре, так как W:10 > W:5. Подчеркиваем W:10.

• Если Weasel Studios ожидает, что Rabbit films выпустит фильм в декабре, то их оптимальной стратегией будет выпуск фильма в декабре, так как W:8 > W:7. Подчеркиваем W:8.

Поделиться:
Популярные книги

Бальмануг. (Не) Любовница 2

Лашина Полина
4. Мир Десяти
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Бальмануг. (Не) Любовница 2

Внешники

Кожевников Павел
Вселенная S-T-I-K-S
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Внешники

Барон диктует правила

Ренгач Евгений
4. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон диктует правила

Наследник павшего дома. Том IV

Вайс Александр
4. Расколотый мир
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Наследник павшего дома. Том IV

Гардемарин Ее Величества. Инкарнация

Уленгов Юрий
1. Гардемарин ее величества
Фантастика:
городское фэнтези
попаданцы
альтернативная история
аниме
фантастика: прочее
5.00
рейтинг книги
Гардемарин Ее Величества. Инкарнация

Идеальный мир для Лекаря

Сапфир Олег
1. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря

Корпулентные достоинства, или Знатный переполох. Дилогия

Цвик Катерина Александровна
Фантастика:
юмористическая фантастика
7.53
рейтинг книги
Корпулентные достоинства, или Знатный переполох. Дилогия

Герой

Бубела Олег Николаевич
4. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.26
рейтинг книги
Герой

Я тебя не предавал

Бигси Анна
2. Ворон
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Я тебя не предавал

Сердце Дракона. Том 9

Клеванский Кирилл Сергеевич
9. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.69
рейтинг книги
Сердце Дракона. Том 9

Гнев Пламенных

Дмитриева Ольга Олеговна
5. Пламенная
Фантастика:
фэнтези
4.80
рейтинг книги
Гнев Пламенных

Кротовский, не начинайте

Парсиев Дмитрий
2. РОС: Изнанка Империи
Фантастика:
городское фэнтези
попаданцы
альтернативная история
5.00
рейтинг книги
Кротовский, не начинайте

Око василиска

Кас Маркус
2. Артефактор
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Око василиска

Последняя Арена 7

Греков Сергей
7. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 7