Теория относительности для миллионов
Шрифт:
В гл. 6 мы вернемся к понятию гравитационной массы и ее связи с инертной массой. Здесь же пойдет речь только об инертной массе, полученной в результате измерений, выполняемых каким-либо наблюдателем. Для наблюдателей, покоящихся относительно предмета, например для космонавтов, везущих в космическом корабле слона, инертная масса предмета остается одной и той же независимо от скорости корабля. Масса слона, измеряемая подобными наблюдателями, называется его собственной массой или массой покоя. Инертная масса того же самого слона, измеренная каким-либо наблюдателем, движущимся относительно этого слона (например, наблюдателем на Земле), называется релятивистской
В этой главе будет идти речь только об инертной массе; когда употребляется слово «масса», его следует понимать именно в этом смысле.
Все три переменные — длина, время, масса—охватываются одним и тем же выражением для лоренцовского сокращения
Длина и скорость хода часов меняются по одному и тому же закону, так что формула для этих величин одна и та же.
В то же время масса и длина временных интервалов меняются по обратным законам, а это означает, что формулу здесь следует написать так:
Масса любого тела, измеренная наблюдателем, движущимся равномерно относительно этого тела, получается умножением массы покоя тела на приведенное выше выражение (где v — относительная скорость объекта; с — скорость света).
Например, если относительная скорость двух космических кораблей составляет 260 000 км/сек, наблюдатели на каждом из кораблей будут считать, что другой корабль вполовину короче, часы на нем идут в два раза медленнее, продолжительность часа в два раза длиннее и масса корабля в два раза больше. Конечно, эти космонавты на своем собственном корабле найдут все совершенно нормальным. Если бы эти корабли смогли достичь относительной скорости, равной скорости света, наблюдатели на каждом из кораблей считали бы, что другой корабль сократил свою длину до нуля, приобрел бесконечную массу в что время на другом корабле замедлилось до полной остановки!
Если бы инертная масса не менялась указанным выше образом, то непрерывное действие силы, такой, например, как сила, развиваемая ракетными двигателями, могло бы поддерживать возрастание скорости корабля до тех пор, пока эта скорость не превысила бы скорости света. Но этого не произойдет, поскольку по мере того, как корабль движется все быстрее и быстрее (с точки зрения, скажем, наблюдателя на Земле), его релятивистская масса все время возрастает в той же пропорции, в которой уменьшается его длина и замедляется время. Когда корабль сократится до одной десятой своей первоначальной длины, его релятивистская масса увеличится в десять раз. Он окажет в десять раз большее сопротивление своим ракетным двигателям; следовательно, потребуется в десять раз большая сила, чем в случае покоящегося корабля, чтобы обеспечить одно и то же увеличение скорости. Скорость света никогда не может быть достигнута. Если бы она была достигнута, внешний наблюдатель нашел бы, что корабль сократил свою длину до нуля, приобрел бесконечную массу, а его ракетные двигатели действуют с бесконечно большой силой.
Космонавты внутри корабля не обнаружили бы у себя никаких изменений, но они видели бы все в космосе проносящимся назад со скоростью света, космическое время — остановившимся, каждую звезду — сплющенной до диска и бесконечно массивной.
Только у авторов научно-фантастических произведений хватает отваги размышлять на тему о том, что смогут увидеть космонавты, если удастся каким-либо образом пробить световой барьер. Возможно, космос показался бы вывернутым наизнанку и превратившимся в свое собственное зеркальное изображение, звезды приобрели бы отрицательную массу, а космическое время пошло бы назад. Спешу добавить, что ни одно из этих явлений не следует из формул специальной теории относительности. Если скорость света превышена, эти формулы дают такие значения длины, времени и массы, которые являются, как говорят математики, «мнимыми числами»: числами, которые содержат квадратный корень из минус единицы. Кто знает? Может быть, корабль, преодолевший световой барьер, влетел бы прямо в Страну волшебника Гудвина!
Выучив, что ничто не может обогнать свет, студенты, начинающие изучение теории относительности, часто оказывались сбитыми с толку, встретив упоминание о скоростях, больших скорости света.
Чтобы ясно понять, что должна дать теория относительности в этом случае, лучше всего будет ввести термин «инерциальная система отсчета». (Более ранние авторы трудов по теории относительности называли ее «инерциальной системой», или «галилеевой системой».) Когда какое-либо тело вроде космического корабля движется равномерно, то говорят, что это тело и все прочие объекты, движущиеся вместе с ним в том же направлении и с той же скоростью (как, например, все объекты внутри корабля), связаны с одной и той же инерциальной системой отсчета. (Инерциальная система отсчета есть декартова система координат, с которой связан этот космический корабль.) Вне связи с определенной инерциальной системой отсчета специальная теория относительности более не применима, и существует много возможностей наблюдать скорости, превышающие скорость света.
Рассмотрим, например, такой простой случай.
Космический корабль, движущийся со скоростью в три четверти скорости света, пролетает над вами, двигаясь точно на восток. В тот же момент другой космический корабль, двигающийся с такой же скоростью, пролетает над вами, направляясь прямо на запад. В вашей системе отсчета, связанной с инерциальной системой отсчета Земли, эти два корабля пролетают один мимо другого с относительной скоростью, равной полутора скоростям света. Они сближаются с этой скоростью и разлетаются с этой скоростью. Ничто в теории относительности не запрещает этого. Однако специальная теория относительности настаивает на том, что если вы летите в одном из кораблей, то, вычислив относительную скорость этих кораблей, вы должны получить значение меньше скорости света.
Мы приложили все усилия, чтобы избежать применения математического аппарата теории относительности и этой книге, но, подобно формуле лоренцевского сокращения, даваемая ниже формула слишком проста, чтобы ее не привести. Если х— скорость одного корабля относительно Земли, а у— скорость другого корабля относительно Земли, то скорость этих кораблей друг относительно друга, как она представляется с Земли, будет, конечно, равна хплюс у. Но, оказавшись на месте наблюдателя на любом из этих кораблей, мы должны складывать скорости по следующей формуле:
В этой формуле с— скорость света. Легко видеть, что, когда скорости кораблей малы сравнительно со скоростью света, эта формула дает результат, почти совпадающий с тем, что получается при сложении двух скоростей обычным способом.
Но если скорости кораблей очень велики, эта формула дает совершенно отличный результат. Возьмем предельный случай и предположим, что вместо космических кораблей имеются два луча света, проходящих над нами в противоположных направлениях. Земной наблюдатель увидит их разлетающимися со скоростью 2с, т. е. с удвоенной скоростью света. Но если бы он двигался вместе с одним из этих лучей, то, вычислив относительную скорость в соответствии с приведенной выше формулой, он получил бы
что, конечно, приводит к значению, равному с. Иными словами, он увидел бы другой луч двигающимся от него со скоростью света.
Предположим, что луч света проходит у нас над головой в тот же момент, что и космический корабль, двигающийся в противоположном направлении со скоростью х. В инерциальной системе отсчета
Земли корабль и свет проходят друг мимо друга со скоростью сплюс х. Читатель может доставить себе удовольствие, вычислив значение скорости света, которое получится, если измерять ее в инерциальной системе отсчета, связанной с космическим кораблем. Конечно, в результате должно опять получиться с.