Термодинамика реальных процессов
Шрифт:
С помощью уравнений переноса и закона отношения потоков можно написать большое множество конкретных соотношений типа (301), (302) и (304), выражающих определенные закономерности развития различных реальных процессов. Большинство этих закономерностей еще нигде не используется и не имеет названий. Но несомненно, что многие из них со временем найдут практическое применение. Характерным примером тому служат известные законы Фарадея и Трутона. Добавление к найденным соотношениям приближенного закона тождественности дает возможность объединить однотипные явления в определенные группы, как это сделано Трутоном и Фарадеем.
В
Физическими коэффициентами не являются главные количественные характеристики ансамбля - экстенсоры, а также энергия, служащая производным свойством первого порядка, интенсиалы, служащие производными свойствами второго порядка, работа и некоторые другие величины. Вместе с тем экстенсоры содержат в себе характеристики, которые по справедливости могут быть названы фундаментальными, или абсолютными, или мировыми физическими постоянными (константами). Таковыми служат минимальные порции (кванты) различных простых веществ, например электрического (заряд электрона, или электриант е ), вермического (вермиант ? ), вибрационного (постоянная Планка h ) и т.д. Не исключено, что и эти константы способны претерпевать какие-то изменения со временем [18, с.196; 21, с.242]. Все остальные коэффициенты не являются константами в истинном смысле этого слова [ТРП, стр.306-310].
7. Теорема интенсиалов.
Для завершения краткой иллюстрации различных способов применения начал рассмотрим одну весьма любопытную теорему, которая характеризует определенные тенденции развития самопроизвольных природных процессов. Теорема гласит, что в изолированной неравновесной системе среднее значение любого данного интенсиала способно и вынуждено самопроизвольно изменяться за счет других интенсиалов; количественная сторона и направление этого изменения определяются конкретными свойствами системы. Докажем эту теорему с помощью семи начал ОТ [20, с.240; 21, с.176].
Дана реальная изолированная неравновесная система, обладающая n степенями свободы и удовлетворяющая условию (298). В объеме такой системы происходит непрерывное самопроизвольное перераспределение всех n веществ и постепенное выравнивание всех n интенсиалов. Этот процесс сопровождается следующими эффектами.
Согласно уравнению (31) первого начала ОТ, суммарная энергия системы остается неизменной, то есть
dU = 0 ; U = const .
Согласно уравнению (50) второго начала ОТ, общее количество любого i-того вещества системы сохраняется постоянным,
dEi = 0 ; ?i = const .
Перераспределение веществ в системе подчиняется пятому и шестому началам, а изменение состояния - третьему и четвертому. Система является реальной; это значит, что в общем случае в ней все коэффициенты состояния суть величины переменные. Отсюда прямо следует, что выравнивание интенсиалов неизбежно сопровождается изменением их средних значений. Средние значения могли бы оставаться постоянными только в том случае, если бы система была идеальной, то есть обладала бы постоянными значениями коэффициентов состояния (емкостей).
Весьма существенно, что изменениям подвергаются средние значения всех интенсиалов. Это объясняется всеобщей связью явлений и находит свое выражение в неравенстве нулю перекрестных коэффициентов состояния. В результате каждый данный интенсиал испытывает влияние со стороны всех n перераспределяющихся веществ одновременно.
Не менее существенно и то обстоятельство, что изменение средних значений любого данного интенсиала может происходить только за счет других, ибо подчиняется законам сохранения энергии и экстенсора. Благодаря этому возрастание каждого данного интенсиала по необходимости влечет за собой уменьшение остальных и наоборот. Теорема доказана.
Эффект самопроизвольного изменения интенсиалов изолированной неравновесной системы усиливается благодаря действию седьмого начала ОТ, особенно его закона экранирования. Выделяющееся экранированное вермическое вещество поступает в общий фонд свободных аргументов уравнения состояния и через последнее изменяет все остальные интенсиалы. На средние значения интенсиалов могут повлиять также другие содержащиеся в системе и высвобождающиеся экранированные вещества.
Как видим, даже простые процессы перераспределения веществ способны вызвать изменение средних значений интенсиалов. Возможности изменений заметно расширяются при наличии в системе более сложных естественных или искусственно воспроизводимых процессов, например круговых.
Весьма важно, что теорема интенсиалов справедлива для любых степеней свободы системы - хрональной, метрической, кинетической, ротационной, вибрационной, вермической, электрической и т.д. Особый интерес представляет кинетическая степень, у которой интенсиалом служит скорость в квадрате. Это значит, что теорема утверждает способность и необходимость изменения скорости изолированной системы за счет изменения других ее интенсиалов, то есть утверждает принципиальную осуществимость безопорных движителей (БМ) [20, с.242; 21, с.178]. Соответствующий пример изменения скорости естественного тела, каковым является планета Земля, обсуждается в работе [21, с.179]. Теория и практика осуществления искусственных БМ рассматриваются в гл. XXI и XXII.
На этом можно закончить краткое изложение различных характерных способов применения начал. Приведенные примеры хорошо иллюстрируют возможности теории. Теперь можно приступить к более подробному изучению свойств всевозможных явлений, находящихся на различных количественных и качественных уровнях мироздания, а также к более детальному анализу различных известных законов, теорий и научных дисциплин. Начнем с повторного рассмотрения наипростейшего макроявления, или парена, но уже с привлечением всего аппарата ОТ [ТРП, стр.310-312].