Творчество как точная наука. Теория решения изобретательских задач
Шрифт:
Задача 52
Известны устройства, позволяющие открывать и закрывать путь газу из сосуда А в сосуд Б, например различные краны и зажимы. Но они слишком грубы для тех случаев, когда нужна наиболее высокая точность, т. е. когда мало открывать кран (или менять степень его открывания) на какую-то очень и очень небольшую величину.
Нужно, чтобы кран был очень простым м в то же время очень точно работающим. Речь при этом идет не о том, чтобы ввести обратную связь между краном и сосудом Б. Пусть краном управляет человек. Вопрос в том, чтобы кран мог точно открываться («краниться»).
Задача 53
В центрифуге в течение длительного времени должны идти химические реакции, для этого необходимо поддерживать внутри центрифуги температуру 250 °C. Поставить
Задача 54
Отрывок из детективного романа:
«Теперь вы в руках правосудия, — сказал шериф. — Надеялись улизнуть, а? Алмаз «Юпитер» — неплохая добыча… Но вы пойманы с поличным. А то, что вы разрезали алмаз на части и огранили, только усугубляет вашу вину.
— Не спешите, шериф, — пожал плечами один из задержанных. — Пропал алмаз «Юпитер»? Выражаем искреннее сочувствие и все такое прочее. У нас нет этого алмаза, у нас всего лишь пять бриллиантов. Наследство покойной бабушки.
— Вот именно, — усмехнулся второй. — Взгляните на это дело с научной точки зрения. Вес разный, форма разная. Цвет совпадает? Мало ли белых алмазов и бриллиантов? Химический состав? Там углерод и у нас углерод, у всех бриллиантов и алмазов углерод. Пожалуй, придется отпустить нас, как вы смотрите на это?..»
Вас ознакомили с этой ситуацией. Ваши предложения?
Задача 55
В книге У. Гордона «Синектика» есть отрывок из записи решения задачи о передаче вращения. Текст записи приведен также в статье В. Орлова «Фейерверк открытий» («Техника-молодежи»), 1973, № 3, с. 4). Ведущий вал развивает от 400 до 4000 об/мин, ведомый вал должен всегда иметь 400 об/мин. Как это осуществить? В записи, приведенной Гордоном, использована эмпатия: один из решавших задачу мысленно представляет, что он находится внутри «черного ящика» (искомого устройства); руками он держится за ведущий вал, ногами — за ведомый; при этом усилия «эмпатирующего» направлены на то, чтобы «в ногах» всегда было 400 об/мин, как бы ни скручивались «руки». Ответ не приведен. Ваши предложения? На каких правилах они основаны?
СТРАТЕГИЯ ИЗОБРЕТАТЕЛЬСТВА: УПРАВЛЕНИЕ ПОСТАНОВКОЙ ЗАДАЧ
«ЛИНИИ ЖИЗНИ» ТЕХНИЧЕСКИХ СИСТЕМ
Жизнь технической системы (как, впрочем, и других систем, например, биологических) можно изобразить в виде S-образной кривой (рис. 12), показывающей, как меняются во времени главные характеристики системы (мощность, производительность, скорость, число выпускаемых систем и т. д.).
Рис 12, 13
У разных технических систем эта кривая имеет, разумеется свои индивидуальные особенности. Но всегда на ней есть характерные участки, которые схематически, с подчеркнутым огрублением, выделены на рис. 13.
В «детстве» (участок 1) техническая система развивается медленно. Затем наступает пора «возмужания» и «зрелости» (участок 2) — техническая система быстро совершенствуется, начинается массовое ее применение. С какого-то момента темпы развития начинают спадать (участок 3) — наступает «старость». Далее (после точки) возможны два варианта. Техническая система А либо деградирует, сменяясь принципиально другой системой Б (современные парусники не имеют скоростей, на которых сто лет назад ходили прославленные чайные клиперы), либо на долгое время сохраняет достигнутые показатели (велосипед не претерпел существенных изменений за последние полвека и не был вытеснен мотоциклом).
От чего зависит соотношение между участками? Иными словами, чем определяется положение точек перегиба (,) на «жизненной кривой» той или иной технической системы?
Изучение кривых развития параметров различных технических систем (скорости движения самолетов и кораблей, скорости бурения, роста энергии ускорителей и т. д.) заставляет сразу обратить внимание на то, что реальные кривые заметно отличаются от ожидаемых теоретических кривых. Характер различия показан на рис. 14, где штриховая кривая — теоретическая, а сплошная — реальная.
Казалось бы, с момента появления техническая система должна неуклонно (хотя и не очень быстро) развиваться до, т. е. до момента перехода к массовому применению. На самом деле переход к массовому применению начинается с опозданием и на более низком техническом уровне.
Период быстрого развития технической системы должен был бы завершиться в точке, там, где исчерпываются возможности использованного в системе принципа и обнаруживается экономическая нецелесообразность дальнейшего развития данной системы (уровень 1). Однако ничего подобного не происходит: реальная точка всегда намного выше теоретической. Когда кривая доходит до уровня 1, в дальнейшем развитии системы оказываются заинтересованными многие люди. Возникает инерция интересов — финансовых, научных (псевдонаучных), карьеристских и продето человеческих (боязнь оставить привычную и обжитую систему). Могут спросить: значит, инерция интересов оказывается сильнее экономических факторов? Да, сильнее. Но и сами экономические факторы умеют приспосабливаться к инерции интересов. Вплоть до уровня 2 система продолжает оставаться экономически выгодной за счет разрушения, загрязнения и хищнической эксплуатации внешней среды.
Типичным примером может служить интенсивное строительство в капиталистических странах больших танкеров. Как известно, катастрофа с танкером «Торри Каньон» (120 тыс. тонн нефти попали в море) привела к тяжелейшим последствиям на побережьях Англии и Франции. С тех пор океан не стал спокойнее, мореплавание не стало безопаснее. Но уже построены танкеры в полмилиллиона тонн, строятся и проектируются танкеры водоизмещением в миллионы тонн. Кривая идет к уровню 2. Экономичность (т. е. прибыль для судовладельцев) обеспечена за счет ущерба внешней среде. Число больших танкеров увеличивается, скорость хода тоже возрастает (хотя до сих пор нет эффективного решения проблемы торможения), неуклонно растет опасность суперкатастрофы.
«Сегодня мне это выгодно, а на остальное наплевать» — эта формула тянет кривую вверх, к уровню 2 (экономично при условии причинения вреда внешней среде). А потом все-таки достигается потолок — уровень 3, определяемый физическими пределами. Нельзя, например, втиснуть на улицу больше автомобилей, чем там может поместиться, когда автомобили стоят впритирку один к другому — от стенки до стенки.
Теоретически пока кривая поднималась вверх к уровню 1, кто-то должен был развивать техническую систему так, чтобы ее точка подъема Б совпадала с точкой кривой и обеспечивался постоянный бесступенчатый подъем. На самом деле реальная кривая начинает ощутимо подниматься только тогда, когда кривая поднялась выше уровня 2 и приблизилась к уровню 3 (пример: работа над «чистым» автомобилем). А быстрый подъем кривой происходит лишь после того, как кривая минует точку и пойдет на спад.