Удар под водой
Шрифт:
Во всяком сосуде, хотя бы в обыкновенном стакане, жидкость давит на стенки и дно. Если мы обведем карандашом любой участок на стенке или дне стакана, то на этот участок давит вес столбика жидкости, у которого основание равно площади обведенного участка, а высота равна расстоянию от участка до поверхности воды. Ясно, что самое большое давление будет на дно стакана.
Теперь предположим, что наш стакан сделан из металла, а дно его может двигаться вверх и вниз. Стакан этот пустой. Подставим под донышко сжатую пружину. Она разожмется и подымет донышко вверх. Начнем теперь лить в стакан воду, все больше и больше. Донышко остается на месте, это значит, что сила нашей пружины больше, чем вес налитой воды. Но вот уровень воды еще поднялся, столб воды в стакане увеличился, и донышко пошло вниз. Такой прибор называется гидростатом, а подвижное донышко — гидростатическим диском (см. рис. на стр. 53). Для него всегда можно выбрать такую пружину, которая сожмется весом столба воды определенной высоты.
Мина с якорем вначале идет на дно. Затем корпус со связанной с ним вьюшкой при помощи специального механизма отделяется от якоря и подымается кверху, минреп сматывается с вьюшки. Гидростат находится тут же, около вьюшки. Все время подъема корпуса мины давление воды еще очень велико, пружина гидростата остается сжатой, диск неподвижен. Но вот оболочка дошла как раз до такого уровня, когда вес столба воды над диском гидростата оказался меньше силы пружины. Пружина начинает разжиматься, диск двигается кверху. С диском связан тормоз. Как только диск начинает двигаться кверху, тормоз стопорит минреп — корпус останавливается на той глубине, на какую установлен гидростат.
Такой же гидростат уже успел еще раньше сработать в механизме, который на дне отделил мину от якоря. Стержень, скрепляющий мину с якорем, соединен с диском гидростата. Когда мина с якорем достигает дна, выросшее давление воды отжимает диск гидростата, а этим самым отводит в сторону скрепляющий стержень. Мина освобождается и всплывает кверху.
Не только гидростат может сыграть роль разъединителя, освободить мину от якоря.
Стержень, скрепляющий мину с якорем, можно подпереть пружиной, а чтобы она не разжималась, вставить между ней и упором… кусок сахару или другого растворяющегося в воле вещества (каменная соль). Сахар или соль не сразу растворяются в воде, проходит несколько минут. За это время мина с якорем достигнет дна. А когда сахар вовсе растает, пружина разожмется настолько, что потянет за собой стержень, мина освободится от якоря и всплывет.
Можно приспособить и штерт так, чтобы в момент, когда его груз коснется дна, срабатывал механизм,
Все эти простые устройства — с гидростатом, с растворяющимися веществами, с штертом — часто и успешно работают в механизмах мины и остроумно решают самые разнообразные и сложные задачи; мы еще встретимся с ними.
Взрыв
Итак, мина поставлена на заданное углубление и подстерегает корабли противника. Взорвется ли неприятельский корабль, если он просто коснется оболочки мины, если он даже сильно ударит своим корпусом по этой оболочке? Нет, не взорвется. Взрывчатая начинка мины обладает очень ценным свойством — она нечувствительна к ударам и толчкам. Во время перевозки снаряженных мин, погрузки их на корабль, во время постановки мин, как ни осторожны минеры, все же происходят и толчки и даже удары. Если бы мины при этом взрывались, было бы слишком опасно и трудно их применять, происходило бы много несчастных случаев.
Кроме десятков или сотен килограммов основного взрывчатого вещества, в мину помещают еще металлический стакан с 100–200 граммами более чувствительного взрывчатого вещества. Такое вещество называется «детонатором».
Чтобы мина взорвалась, достаточно быстро нагреть детонатор, и взрыв передается на весь заряд.
А как нагреть детонатор? Для этого достаточно ударить по капсюлю детонатора. При ударе развивается тепло. Оно передается веществу детонатора, происходит взрыв, который в свою очередь заставляет взорваться и основной заряд мины.
Значит, надо так устроить мину, чтобы от столкновения с кораблем (а при этом мина получает очень сильный удар) что-то ударяло бы по капсюлю детонатора. Вот в этом-то и заключается суть устройства ударно-механического взрывателя мины. Внутри мины острый боек ударника «нацелился» на капсюль. Специальный упор не позволяет бойку ударить по капсюлю. Упор этот сделан в виде груза на стержне, который укреплен на шарнире. Стоит только отвести груз в сторону, и рычаг с бойком сделает свое дело; упадет на капсюль, ударит его, нагреет, воспламенит, взорвет. Но для этого нужен сильный толчок, от которого груз сместился бы в сторону. Такой толчок и получается, когда корабль сталкивается с миной.
Чтобы нагреть детонатор, можно и по-другому использовать столкновение корабля с миной. Можно включить детонатор в электрическую цепь от батареи и устроить ударный механизм так, чтобы при толчке груз отходил, а упавший рычаг замыкал бы электрическую цепь. Тогда электрический ток нагреет проводник, тепло распространится по проводнику, проникнет в детонатор и взорвет его. Но откуда потечет ток? Из корпуса мины, из его верхней части во все стороны торчат своего рода «усы» мины, 5–6 усов. Это — так называемые «гальвано-ударные колпаки». Сверху на них надеты мягкие свинцовые оболочки. Внутри свинцовых колпачков — стеклянные сосуды. В эти стеклянные сосуды налита особая жидкость — электролит. Если такую жидкость налить в сосуд и погрузить в нее два разных проводника, то получите так называемый гальванический элемент — один из источников электрического тока. В мине эти два разных проводника — электроды элемента — помещены отдельно от электролита, в особом стаканчике. Когда корабль, наскочивший на мину, сминает колпачок, разбивает стеклянные сосуды, электролит переливается в стаканчик с электродами. Немедленно возникает электрический ток, который течет по проводникам в электрический запал В этот момент цепь уже замкнута и развивающееся тепло взрывает детонатор и самое мину.