Удар под водой
Шрифт:
Механические «рулевые»
На всяком корабле есть рулевой. Он держит в руках штурвал, поворачивает им руль, корабль меняет направление. У торпеды есть тоже рули, и ими также нужно управлять. Если этого не делать, торпеда может выскочить на поверхность или, наоборот, нырнуть очень глубоко и удариться о дно. Может даже случиться, что она повернет в другую сторону или пойдет назад и ударит свой корабль.
Там, где кончается хвостовая часть торпеды, укреплены две пары рулей. Одна пара вертикальная, другая — горизонтальная. Каждая пара рулей торпеды имеет своего «рулевого». Но это, конечно, не люди, а механические рулевые.
Горизонтальные рули держат ход торпеды по глубине. Это значит, что они заставляют торпеду держаться
Линейный корабль глубоко сидит в воде: для попадания в него торпедой пониже, подальше от броневой защиты, необходимо, чтобы торпеда шла глубже. Малые надводные корабли неглубоко сидят в воде; если пустить торпеду на большой глубине, она может пройти под днищем такого корабля, под его килем. Значит, надо пустить торпеду на небольшой глубине. И надо обеспечить, чтобы заданная глубина не менялась.
Вот тут-то и начинается работа первого рулевого торпеды — гидростатического аппарата.
Мы уже знакомы с устройством гидростата, работающего в мине. В торпеде его устройство повторяется. Цилиндр с подвижным диском и пружиной помещен в торпеде так, что диск сообщается с морской водой, испытывает давление воды. Чем глубже идет торпеда, тем больше это давление; чем мельче идет торпеда, тем меньше и давление. Это давление будет толкать диск гидростата снизу вверх.
Что нужно сделать, чтобы торпеда шла на заданной глубине, например на глубине в 4 метра? Регулируют пружину гидростата таким образом, чтобы при глубине в 4 метра диск занимал в цилиндре определенное положение. Если торпеда пойдет глубже, давление увеличится, диск пойдет кверху. Если торпеда пойдет мельче, диск опустится.
Особые тяги связывают диск с рулевой машинкой, работающей от сжатого воздуха. Рулевая машинка в свою очередь связана с горизонтальными рулями. Если торпеда пошла вниз и нырнула ниже заданной глубины, диск пошел кверху, потянул тягу, заработала рулевая машинка и повернула рули. Торпеда начинает итти кверху. Вот она достигла определенного уровня под водой, но не удержалась на нем и пошла выше. Диск опустился, снова потянул тягу, но уже в другую сторону. Снова заработала рулевая машинка и повернула рули. Приходится торпеде повернуть книзу. Так гидростат не дает торпеде уйти от заданной глубины.
А как же ведут себя гидростат и рули, если торпеда правильно идет на заданной глубине? В этом случае диск остается в покое; все устройство так отрегулировано, что при неподвижном диске горизонтальные рули располагаются в горизонтальнойплоскости, составляют прямое продолжение оперения хвоста торпеды. При этом должен получиться и прямой ход, без скачков вниз и вверх. На самом деле строго прямого хода не бывает: торпеда всегда уходит то вверх, то вида, идет по волнистой линии. Но если нет резких скачков, если отклонения от заданного уровня не велики, не больше 1/2 метра, ход по глубине считается удовлетворительным. Но не один гидростат решает эту задачу.
Гидростату ровно столько лет, сколько и самой торпеде. Уайтхед изобрел этот прибор, когда стремился заставить мину-лодку Лупписа ходить под водой. Испытания показали, что торпеда делает скачки и уклоняется от заданного уровня на 6–8 метров. Очень часто она зарывалась в песчаное дно или, как дельфин, выпрыгивала и кувыркалась на поверхности воды.
Уайтхед скоро открыл причину этой «резвости». Торпеда — тяжелое тело. Вот она с большой скоростью идет вниз, а рули потянули ее наверх. Торпеда не сразу «послушается руля», по инерции она еще пройдет некоторое расстояние вниз. Рули тоже всегда немного опаздывают с поворотом. Да и понятно почему. В тот миг, когда торпеда ушла ниже заданной глубины, диск немедленно начинает двигаться. Но между ним и рулями должны еще сработать тяги и рулевая машинка. На это уходит время. Вот почему первая торпеда Уайтхеда делала прыжки.
Уайтхед начал решать новую задачу — как уничтожить или немного уменьшить прыжки торпеды. Через два года (в 1868 г.) он эту задачу решил — торпеда начала ходить ровнее, без скачков. Уайтхед присоединил к гидростату еще один механизм. «Секрет мины» — так много лет назывался этот прибор.
Конечно, все видели маятник в стенных часах. «Секрет» мины — это маятник. Его тяжелый груз через специальную рулевую машинку соединен с рулевыми тягами. Точка подвески выбрана таким образом, что груз маятника как бы помогает гидростату выпрямить ход торпеды. Стоит торпеде нырнуть носом вниз или прыгнуть кверху, как тяжесть маятника начинает действовать через рулевую машинку на рулевые тяги. Маятник — помощник гидростата. Он ускоряет перекладку рулей, когда торпеда отклоняется от заданной глубины. Когда торпеда возвращается на заданную глубину, тот же маятник препятствует слишком резкому прыжку торпеды, выравнивает ее ход.
Гидростат вместе с маятником составляют гидростатический аппарат. Это и есть первый рулевой торпеды, который в подводных глубинах держит правильный курс на корабль противника.
Теперь мы знаем, как Уайтхеду удалось обеспечить торпеду первым рулевым. Но вскоре понадобился и второй рулевой.
В первое время существования торпеды еще не было таких прочных материалов, которые могли бы выдерживать большое давление воздуха в резервуаре. Чем меньше было давление, тем меньше воздуха вмещал резервуар, тем меньше запас энергии был у двигателя торпеды. Поэтому торпеда едва-едва проходила 400 метров. Чтобы вернее попасть, приходилось близко подходить к противнику. На таком малом расстоянии торпеда только немного отклонялась от заданного направления. И все же часто случались промахи.
В дальнейшем торпеда совершенствовалась, увеличили запас воздуха в резервуаре, дальность хода торпеды выросла, и отклонения торпеды от направления стали очень большими, поэтому часто случались промахи даже по неподвижному противнику. А ведь нужно было стрелять и по движущимся кораблям.
Уайтхеду так и не удалось додуматься до устройства такого механического рулевого, который так же, как и гидростат, замечал бы отклонения и заставлял торпеду возвращаться к заданному направлению.
Только через 30 лет после рождения торпеды (в 1896 г.) конструкторам удалось изобрести для нее второго механического рулевого — прибор для управления ходом по направлению. Заслуга эта принадлежит конструктору Обри. Поэтому и прибор назван его именем; так и говорят — прибор Обри. Этот прибор по своему устройству напоминает простой волчок, тот самый волчок, которым забавляются дети. Если такой волчок вращается с очень большой скоростью, его ось всегда находится в одном и том же положении, всегда сохраняет свое направление. Даже большое усилие не заставит ось быстро вращающегося волчка изменить свое направление. В технике такой волчок называется гироскопом.