Чтение онлайн

на главную - закладки

Жанры

Удивительная генетика
Шрифт:

Древние бактерии (археи) под микроскопом

Вскоре после успеха Крэйга Вентера и его команды профессор Принстонского университета Майкл Хечт создал гены, кодирующие не существующие в природе белки. Белковая молекула построена всего из 20 аминокислот, однако этого более чем достаточно, поскольку в состав белковой молекулы входит несколько сотен аминокислот. Если их перетасовать, мы получим новый белок с принципиально иными свойствами. Число мыслимых комбинаций многократно превышает количество реальных белков, но это не означает, что любая комбинация даст на выходе работоспособный продукт. Одни белки окажутся нестабильными, другие – токсичными,

ну а третьи – просто бесполезными. И все же среди бесчисленного множества виртуальных белков наверняка должны отыскаться аминокислотные последовательности, способные катализировать нужную организму реакцию. Именно такие белки и попытались создать принстонские ученые.

Биолог Борис Жуков пишет:

Для начала специальная компьютерная программа составила более миллиона аминокислотных последовательностей – термодинамически устойчивых и не похожих на известные белки. Из них ученые отобрали 27, трехмерная структура которых (рассчитанная опять-таки компьютером) позволяла предполагать, что они могут проявлять ферментативную активность [54] . Для каждого такого белка была написана последовательность нуклеотидов, которая могла бы его кодировать, – то есть ген. Каждый такой ген был искусственно синтезирован, а затем внедрен в ДНК бактерии, у которой перед этим был удален один из «естественных» генов. После этого «реконструированные» клетки были высажены на специальную среду, для жизни на которой необходим белок, кодируемый удаленным геном. На такой среде бактерия могла выжить лишь в том случае, если небывалый белок, считанный с искусственного гена, заменит утраченный фермент.

В четырех случаях из 27 именно это и произошло: клетки, лишенные жизненно важного гена, успешно росли и размножались. Белок, придуманный исследователями, не только успешно считывался в клетке, но и работал в ней.

54

Ферментативная активность любого белка зависит не только от его аминокислотной последовательности, но и от трехмерной пространственной конфигурации. Белок – это не просто цепочка аминокислот; он всегда сворачивается в глобулу – миниатюрный шарик.

Комментарии излишни: если эксперимент принстонских специалистов завершится созданием надежной технологии, можно будет не только синтезировать практически любые вещества, но и создавать организмы, не существующие в природе.

Хотя успехи молекулярной биологии последних десятилетий буквально ошеломляют, обольщаться сверх меры все же не стоит. Например, сравнительно недавно большой коллектив ученых во главе с профессором Киотского университета Акирой Иритани объявил о начале работ по воссозданию живого мамонта из палеолитических останков, похороненных в вечной мерзлоте. По мнению участников проекта, цель может быть достигнута уже через пять-шесть лет.

Источники генетического материала для клонирования – замороженные мамонтята

Большинство ученых весьма скептически относятся к таким заявлениям. Дело в том, что генетический материал мамонтов сохранился в виде мелких фрагментов, поскольку кристаллики льда при замерзании необратимо нарушают тончайшую клеточную структуру, в том числе ядерную мембрану. А цитоплазматические ферменты – нуклеазы, получив доступ к молекулам ДНК, за десятки тысячелетий успели поработать на совесть. Поэтому вместо строгой линейной последовательности генов мы имеем «кашу» из отдельных субъединиц, своего рода рассыпанный типографский набор.

Борис Жуков пишет:

Современные методы работы с нуклеиновыми кислотами позволяют сложить эти фрагменты в исходную последовательность – но, естественно, виртуально. Синтезировать по ней реальные молекулы ДНК длиной в сотню миллионов пар нуклеотидов (средний размер хромосомы мамонта) пока еще никто не пытался. К тому же сначала надо бы как-то узнать, какой фрагмент в какой хромосоме находится, – притом что обычные методы генетического картирования неприменимы к ископаемому материалу.

Но главная трудность даже не в этом. Ведь хромосома – это не просто молекула ДНК, а сложное нуклеопротеидное соединение, куда входят так называемые гистоновые белки. Мы пока еще слишком мало знаем о тонкой структуре хромосом, чтобы воссоздать ее в законченном виде. А как быть с клеточным ядром – ведь в ископаемых тканях целых ядер не сохранилось? Между тем ядра тоже придется собирать заново, потому что современные технологии клонирования предусматривают пересадку в донорскую яйцеклетку именно ядра, а не отдельных хромосом и уж во всяком случае не «голых» молекул ДНК. И совершенно непонятно, каким образом участники проекта намереваются обойти эти трудности.

Однако это еще далеко не все. Коротко напомним читателю, к чему сводится технология клонирования. Генетический материал (обязательно в виде клеточного ядра) помещают в донорскую яйцеклетку, из которой удалено ее собственное ядро, а затем подсаживают эту яйцеклетку в полость матки суррогатной матери. Именно так появилась на свет знаменитая овечка Долли.

Овечка Долли и ее «создатель» английский эмбриолог Ян Вилмут

На бумаге, конечно, все выглядит гладко, но следует иметь в виду, что клонирование – очень трудоемкая и капризная процедура. Большая часть пересаженных яйцеклеток отторгается, и даже сегодня в самых лучших современных лабораториях эффективность клонирования составляет всего лишь несколько процентов. И это при том, что технология хорошо обкатана, а все три особи (источник генетического материала, суррогатная мать и донор яйцеклетки) принадлежат к одному биологическому виду. Понятно, что при работе с генетическим материалом мамонта выход уменьшится как минимум на порядок, а это значит, что потребуются многие сотни слоних в качестве суррогатных матерей. Поэтому, похоже, мы еще очень нескоро сможем увидеть живого мамонта.

Венец творения

Античные философы боготворили человека, доходя в своем почитании до откровенного антропоцентризма. «Человек есть мера всех вещей», – утверждал Протагор, живший в V веке до рождества Христова.

Христианство низвергло человека с этого пьедестала, однако оставило ему почетное второе место, ибо человек был сотворен по образу и подобию божьему. На заре эпохи Просвещения, когда наука теснила религию по всему фронту, споры о природе человека вспыхнули с новой силой. Одни мыслители усматривали в нем едва ли не венец творения, а другие занимали абсолютно противоположную точку зрения.

Сегодня эти дебаты представляют сугубо исторический интерес. В наши дни серьезные ученые не сомневаются в близком родстве Homo sapiens и высших приматов. Даже Ватиканский собор в конце концов признал, что теория Дарвина правильно толкует вопросы происхождения человеческого тела (о душе лучше не вспоминать) и мы многое унаследовали от общего предка, жившего семь или восемь миллионов лет назад.

Не стоит обольщаться: человек – животное весьма несовершенное, обремененное кучей врожденных генетических программ, работающих хаотично и вразнобой. На гребень успеха нас вынесли членораздельная речь и понятийное мышление, благодаря которым мы в значительной степени освободились от жесткого диктата естественного отбора, завоевали планету и выстроили современную цивилизацию. Однако неистребимая биология никуда не делась, и печать нашего животного происхождения все время дает о себе знать.

Но почему наши генетические программы так плохо подогнаны друг к другу? Дело в том, что любой биологический вид (и человек здесь вовсе не исключение) получает в наследство от предков полный набор разнообразных поведенческих программ. Инстинкт отнюдь не противоречит разуму. Рассудочная деятельность составляет как бы второй этаж поведения, она не игнорирует унаследованные программы, а плодотворно сотрудничает с ними. Если бы человек, как и все прочие животные, продолжал развиваться спокойно и неспешно, естественный отбор рано или поздно привел бы противоречивые программы в соответствие друг другу. Лишнее было бы убрано, что-то – подчищено, и на выходе получился бы стандартный биологический вид, идеально вписанный в среду.

Поделиться:
Популярные книги

Проводник

Кораблев Родион
2. Другая сторона
Фантастика:
боевая фантастика
рпг
7.41
рейтинг книги
Проводник

Идеальный мир для Лекаря 17

Сапфир Олег
17. Лекарь
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 17

Идеальный мир для Лекаря 13

Сапфир Олег
13. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 13

LIVE-RPG. Эволюция 2

Кронос Александр
2. Эволюция. Live-RPG
Фантастика:
социально-философская фантастика
героическая фантастика
киберпанк
7.29
рейтинг книги
LIVE-RPG. Эволюция 2

Измена. Истинная генерала драконов

Такер Эйси
1. Измены по-драконьи
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Измена. Истинная генерала драконов

Инферно

Кретов Владимир Владимирович
2. Легенда
Фантастика:
фэнтези
8.57
рейтинг книги
Инферно

Тайный наследник для миллиардера

Тоцка Тала
Любовные романы:
современные любовные романы
5.20
рейтинг книги
Тайный наследник для миллиардера

Личник

Валериев Игорь
3. Ермак
Фантастика:
альтернативная история
6.33
рейтинг книги
Личник

Внебрачный сын Миллиардера

Громова Арина
Любовные романы:
современные любовные романы
короткие любовные романы
5.00
рейтинг книги
Внебрачный сын Миллиардера

Ваше Сиятельство 7

Моури Эрли
7. Ваше Сиятельство
Фантастика:
боевая фантастика
аниме
5.00
рейтинг книги
Ваше Сиятельство 7

Смерть может танцевать 3

Вальтер Макс
3. Безликий
Фантастика:
боевая фантастика
5.40
рейтинг книги
Смерть может танцевать 3

Измена. Верну тебя, жена

Дали Мила
2. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Верну тебя, жена

Ты всё ещё моя

Тодорова Елена
4. Под запретом
Любовные романы:
современные любовные романы
7.00
рейтинг книги
Ты всё ещё моя

Сумеречный Стрелок 2

Карелин Сергей Витальевич
2. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 2