Удивительная химия
Шрифт:
Итак, материя начала стремительно разлетаться и остывать. Чем ниже температура, тем больше возможностей для образования разнообразных структур (например, при комнатной температуре могут существовать миллионы различных органических соединений, при +500 °C — лишь немногие, а выше +1000 °C, вероятно, никакие органические вещества существовать не могут, — все они при высокой температуре расщепляются на составные части). По оценкам ученых, через 3 минуты после взрыва, когда температура снизилась до миллиарда градусов, начался процесс нуклеосинтеза (это слово происходит от латинского nucleus — «ядро» и греческого «синтесис» — «соединение, сочетание»), т. е. процесс соединения протонов и нейтронов в ядра различных элементов. Помимо протонов — ядер водорода, появились и ядра гелия; эти ядра еще не могли присоединить электроны и образовать атомы из-за слишком высокой температуры. Первичная Вселенная состояла из водорода (примерно 75 %) и гелия с примесью небольшого количества следующего по массе элемента — лития (в его ядре три протона). Этот состав не изменялся примерно 500 тысяч лет. Вселенная продолжала расширяться, остывать и становилась все более разреженной. Когда температура снизилась до +3000 °С, электроны получили возможность соединяться с ядрами, что привело к образованию
Казалось бы, что и дальше Вселенная, состоящая из водорода и гелия, должна была расширяться и остывать до бесконечности. Но тогда не было бы не только других элементов, но и галактик, звезд, а также нас с вами. Бесконечному расширению Вселенной противодействовали силы всемирного тяготения (гравитации). Гравитационное сжатие материи в разных частях разреженной Вселенной сопровождалось повторным сильным разогревом — наступила стадия массового образования звезд, которая продолжалась около 100 миллионов лет. В тех состоящих из газа и пыли областях пространства, где температура достигала 10 миллионов градусов, начинался процесс термоядерного синтеза гелия путем слияния ядер водорода. Эти ядерные реакции сопровождались выделением огромного количества энергии, которая излучалась в окружающее пространство: так загоралась новая звезда. Пока в ней было достаточно водорода, сжатию звезды под действием сил тяготения противодействовало излучение, которое «давило изнутри». Наше Солнце также светит за счет «сжигания» водорода. Идет этот процесс очень медленно, так как сближению двух положительно заряженных протонов препятствует сила кулоновского отталкивания. Так что нашему светилу суждены еще долгие годы жизни.
Когда запас водородного горючего подходит к концу, постепенно прекращается и синтез гелия, а вместе с ним затухает мощное излучение. Силы гравитации вновь сжимают звезду, температура повышается и становится возможным слияние друг с другом уже ядер гелия с образованием ядер углерода (6 протонов) и кислорода (8 протонов в ядре). Эти ядерные процессы также сопровождаются выделением энергии. Но и запасам гелия рано или поздно приходит конец. И тогда наступает третий этап сжатия звезды силами гравитации. А дальше все зависит от массы звезды на этом этапе. Если масса не очень велика (как у нашего Солнца), то эффект от повышения температуры при сжатии звезды будет недостаточен, чтобы углерод и кислород могли вступить в дальнейшие реакции ядерного синтеза; такая звезда становится так называемым белым карликом. Более тяжелые элементы «изготовлены» в звездах, которые астрономы называют красными гигантами — их масса в несколько раз больше массы Солнца. В этих звездах и идут реакции синтеза более тяжелых элементов из углерода и кислорода. Как образно выражаются астрономы, звезды — это ядерные костры, зола которых — тяжелые химические элементы.
Выделяющаяся на этом этапе жизни звезды энергия сильно «раздувает» внешние слои красного гиганта; если бы наше Солнце стало такой звездой, Земля оказалась бы внутри этого гигантского шара — перспектива для всего земного не самая приятная. Звездный ветер, «дующий» с поверхности красных гигантов, выносит в космическое пространство синтезированные этими звездами химические элементы, которые образуют гуманности (многие из них видны в телескоп).
Красные гиганты живут сравнительно недолго — в сотни раз меньше, чем Солнце. Если масса такой звезды превышает массу Солнца в 10 раз, тогда возникают условия (температура порядка миллиарда градусов) для синтеза элементов вплоть до железа. Ядро железа — наиболее стабильное из всех ядер. Это означает, что реакции синтеза элементов, которые легче железа, идут с выделением энергии, тогда как синтез более тяжелых элементов требует затрат энергии. С затратой энергии идут и реакции распада железа на более легкие элементы. Поэтому в звездах, достигших «железной» стадии развития, происходят драматические процессы: вместо выделения энергии идет ее поглощение, что сопровождается быстрым понижением температуры и сжатием до очень маленького объема; астрономы называют этот процесс гравитационным коллапсом (от латинского слова collapsus — «ослабевший, упавший»; недаром медики так называют внезапное падение кровяного давления, что очень опасно для человека). В ходе гравитационного коллапса образуется огромное число нейтронов, которые, благодаря отсутствию заряда, легко проникают в ядра всех имеющихся элементов. Пересыщенные нейтронами ядра претерпевают особое превращение (его называют бета-распадом), в ходе которого из нейтрона образуется протон; в результате из ядра данного элемента получается следующий элемент, в ядре которого уже одним протоном больше. Ученые научились воспроизводить такие процессы в земных условиях; хорошо известный пример — синтез изотопа плутония-239, когда при облучении нейтронами природного урана (92 протона, 146 нейтронов) его ядро захватывает один нейтрон и образуется искусственный элемент нептуний (93 протона, 146 нейтронов), а из него-тот самый смертоносный плутоний (94 протона, 145 нейтронов), который используется в атомных бомбах. В звездах же, которые претерпевают гравитационный коллапс, в результате захвата нейтронов и последующих бета-распадов образуются сотни различных ядер всех возможных изотопов химических элементов. Коллапс звезды заканчивается грандиозным взрывом, сопровождающимся выбросом огромной массы вещества в космическое пространство — образуется сверхновая звезда. Выброшенное вещество, содержащее все элементы из таблицы Менделеева (и в нашем теле содержатся те самые атомы!), разлетается по сторонам со скоростью до 10 000 км/с, а небольшой остаток вещества погибшей звезды сжимается (коллапсирует) с образованием сверхплотной нейтронной звезды или даже черной дыры. Изредка такие звезды вспыхивают на нашем небосводе, и если вспышка произошла не слишком далеко, сверхновая звезда по яркости затмевает все остальные звезды. И не удивительно: яркость сверхновой звезды может превышать яркость целой галактики, состоящей из миллиарда звезд! Одна из таких «новых» звезд, в соответствии с китайскими хрониками, вспыхнула в 1054 году. Сейчас на этом месте находится известная Крабовидная туманность в созвездии Тельца, а в ее центре расположена быстроврашающаяся (30 оборотов в секунду!) нейтронная звезда. К счастью (для нас, а не для синтеза новых элементов), такие звезды вспыхивали покалишь в далеких галактиках…
В результате «горения» звезд и взрыва сверхновых звезд в космическом пространстве оказались все известные химические элементы. Остатки сверхновых звезд в виде расширяющихся туманностей, «разогретых» радиоактивными превращениями, сталкиваются друг с другом, конденсируются в плотные образования, из которых под действием гравитационных сил возникают звезды нового поколения. Эти звезды (в их числе и наше Солнце) уже с самого начала существования содержат в своем составе примесь
Почему же одних элементов образовалось много, а других — мало? Оказывается, в процессе нуклеосинтеза с наибольшей вероятностью образуются ядра, состоящие из небольшого четного числа протонов и нейтронов. Тяжелые ядра, «переполненные» протонами и нейтронами, менее устойчивы и их во Вселенной меньше. Существует общее правило: чем больше заряд ядра, чем оно тяжелее, тем меньше таких ядер во Вселенной. Однако это правило выполняется не всегда. Например, в земной коре мало легких ядер лития (3 протона, 3 нейтрона), бора (5 протонов и 5 или 6 нейтронов). Предполагают, что эти ядра по ряду причин не могут образоваться в недрах звезд, а под действием космических лучей «откалываются» от более тяжелых ядер, накопившихся в межзвездном пространстве. Таким образом, соотношение различных элементов на Земле — отголосок бурных процессов в космосе, которые происходили миллиарды лет назад, на более поздних этапах развития Вселенной.
При благоприятных условиях атомы разных элементов могут соединяться между собой в более сложные образования — молекулы. Это могут быть простейшие двухатомные частицы, например, молекулярный водород, состоящий из двух атомов водорода (Н2), «осколок» молекулы воды, называемый гидроксилом (ОН), цианид (CN).
Процессы объединения атомов в молекулы широко распространены во Вселенной и всегда происходят там, где для этого есть подходящие условия. Таким условиям, например, отвечает умеренная температура, которая должна быть не слишком высокой (десятки-сотни градусов Цельсия) и не слишком низкой (иначе атомам не хватит энергии для взаимодействия друг с другом, т. е. для химической реакции). В межзвездной среде условия для образования молекул не очень благоприятные, хотя бы из-за чрезвычайной разреженности вещества (несколько атомов в 1 см3, тогда как в каждом кубическом сантиметре воздуха их 3,7-1019). Тем не менее в космосе обнаружены многие молекулы, в том числе и довольно сложные, содержащие большое количество разных атомов. Насколько далеко может зайти процесс усложнения молекул в межзвездной среде? Не могут ли таким способом возникнуть какие-либо формы жизни? Наука пока не в состоянии ответить на эти вопросы — мы ведь даже толком не знаем, как возникла жизнь на Земле и действительно ли она возникла на нашей планете или была каким-то образом «занесена» из космоса…
Доподлинно известно, что в благоприятных условиях возможно соединение в определенном порядке многих тысяч атомов, при этом образуются такие сложные образования, как молекулы белков, молекулы наследственности ДНК, содержащие десятки тысяч атомов.
Полагают, что Солнечная система образовалась примерно 4,6 миллиарда лет назад. За это время и возникло окружающее нас богатейшее разнообразие неорганических и органических соединений. И все они образовались из химических элементов, уже имевшихся в Солнечной системе в момент ее образования. Процесс образования сложных соединений из отдельных атомов и простейших молекул называют «химической эволюцией». В этом процессе, который длился миллиарды лет, еще много «белых пятен», в частности — как из простых молекул возникли сложные, состоящие из многих тысяч атомов; как эти сложные молекулы дали начало простейшим живым существам; наконец, как шло последующее развитие — от простейших одноклеточных микроорганизмов до высших животных и «венца природы» — мыслящего человека.
КАК РАБОТАЮТ ХИМИКИ
Все мы постоянно находимся в мире, где царствуют числа. Этими числами измеряется все: иена — на хлеб или на гектар леса, время — до окончания урока или до выключения двигателя ракеты, расстояние — между шкафом и диваном и между скоплениями галактик, масса — атома урана и урожая пшеницы, температура — тела больного и чугуна в доменной печи… А еще измеряются сила электрического тока и сила света, плоские и телесные углы, площади и объемы, скорости и ускорения, плотности тел и их сжимаемость, твердость и давление, энергия и мощность, жесткость воды и влажность воздуха, частота и период колебаний, электрический заряд и электропроводность, магнитный поток и магнитная восприимчивость, яркость и освещенность, прозрачность и мутность, интенсивность радиации и период полураспада… Перечислять можно очень долго. И, конечно, не химики первыми начали производить измерения. И не физики. Без измерений могут обходиться только животные. Уже первобытные люди должны были считать дни до начала наступления холодов или дни до периода дождей и разлива рек. Конечно, единицы измерения, если не считать «естественных», таких как сутки и год, у всех были разные: масса и длина ячменного зерна, расстояние между концами вытянутых пальцев кисти или между поднятой рукой и ногой (во всех таких случаях речь, естественно, шла только о средних величинах; иногда эти величины узаконивали, «привязывая», например, к длине локтя или ступни монарха).
Понятно, что у каждого племени, а потом и у каждого народа появлялись свои единицы измерения; это вносило большие неудобства в общение между ними. И такие неудобства до сих пор окончательно не изжиты, хотя еще в середине XX века была принята Международная система единиц (СИ). Вот и приходится переводить английские единицы давления psi (pounds per square inch, т. e. фунты на квадратный дюйм) в привычные дня нас килограммы на квадратный сантиметр (атмосферы), градусы Фаренгейта, по неудобной формуле, — в градусы Цельсия, морские и географические мили — в километры, футы — в метры, фунты — в килограммы, галлоны и баррели — в литры, даты по лунному календарю и по хиджре (где летоисчисление ведется с 662 года, когда пророк Мухаммед переселился из Мекки в Медину) — в даты по «новому» (а иногда и по «старому») стилю солнечного календаря, не говоря уже о пересчете наших рублей в украинские гривны или ангольских кванз в свазилендские лилангени. Как совершенно справедливо заметил М. И. Грамм, автор «Занимательной энциклопедии мер. единиц и денег», если бы знаменитая Книга рекордов Гиннеса появилась лет 200 назад, в ней почти никто не смог бы разобраться — настолько непохожи были в разных странах единицы измерения чего угодно. Немецкий математик п физик Иоганн Ламберт (1728–1777) в своей книге «Пирометрия» (этот термин дословно означает «измерение теплоты») описал 19 разных температурных шкал, которыми пользовались в XVIII веке! Сейчас от них остались только три, но и это слишком много.