Чтение онлайн

на главную

Жанры

UNIX: разработка сетевых приложений
Шрифт:

2. Если локальный IP-адрес связан с символьным сокетом функцией

bind
, IP-адрес получателя в полученной дейтаграмме должен совпадать с этим адресом, иначе дейтаграмма не посылается данному сокету.

3. Если для символьного сокета был определен внешний адрес с помощью функции

connect
, IP-адрес отправителя в полученной дейтаграмме должен совпадать с этим адресом, иначе дейтаграмма не посылается данному сокету.

Следует отметить, что если символьный сокет создан с нулевым значением аргумента

protocol
и не вызывается ни функция
bind
, ни функция
connect
, то сокет получает копии всех дейтаграмм, которые ядро направляет символьным сокетам.

Дейтаграммы IPv4 всегда передаются

через символьные сокеты целиком, вместе с заголовками. В версии IPv6 символьному сокету передается все, кроме дополнительных заголовков (см., например, рис. 28.4 и 28.6).

ПРИМЕЧАНИЕ

В заголовке IPv4, передаваемом приложению, для ip_len, ip_off и ip_id установлен порядок байтов узла, а все остальные ноля имеют порядок байтов сети. В системе Linux все поля остаются в сетевом порядке байтов.

Как уже говорилось, интерфейс символьных сокетов определяется таким образом, чтобы работа со всеми протоколами, в том числе и не обрабатываемыми ядром, осуществлялась одинаково. Поэтому содержимое полей зависит от ядра операционной системы.

В предыдущем разделе мы отметили, что все ноля символьного сокета IPv6 остаются в сетевом порядке байтов.

Фильтрация по типу сообщений ICMPv6

Символьный сокет ICMPv4 получает большинство сообщений ICMPv4, полученных ядром. Но ICMPv6 является расширением ICMPv4, включающим функциональные возможности ARP и IGMP (см. раздел 2.2). Следовательно, символьный сокет ICMPv6 потенциально может принимать гораздо больше пакетов по сравнению с символьным сокетом ICMPv4. Но большинство приложений, использующих символьные сокеты, заинтересованы только в небольшом подмножестве всех ICMP-сообщений.

Для уменьшения количества пакетов, передаваемых от ядра к приложению через символьный ICMPv6-сокет, предусмотрен фильтр, связанный с приложением. Фильтр объявляется с типом данных

struct icmp6_filter
, который определяется в заголовочном файле
<netinet/icmp6.h>
. Для установки и получения текущего ICMPv6-фильтра для символьного сокета ICMPv6 используются функции
setsockopt
и
getsockopt
с аргументом
level
, равным
IPPROTO_ICMPV6
, и аргументом
optname
, равным
ICMP6_FILTER
.

Со структурой

icmp6_filter
работают шесть макросов.

#include <netinet/icmp6.h>

void ICMP6_FILTER_SETPASSALL(struct icmp6_filter * filt);

void ICMP6_FILTER_SETBLOCKALL(struct icmp6_filter * filt);

void ICMP6_FILTER_SETPASS(int msgtype, struct icmp6_filter * filt);

void ICMP6_FILTER_SETBLOCK(int msgtype, struct icmp6_filter * filt);

int ICMP6_FILTER_WILLPASS(int msgtype, const struct icmp6_filter * filt);

int ICMP6_FILTER_WILLBLOCK(int msgtype, const struct icmp6_filter * filt);

Все возвращают: 1, если фильтр пропускает (блокирует) сообщение данного типа, 0 в противном случае

Аргумент

filt
всех макрокоманд является указателем на переменную
icmp6_filter
, изменяемую первыми четырьмя макрокомандами и проверяемую последними двумя. Аргумент
msgtype
является значением в интервале от 0 до 255, определяющим тип ICMP-сообщения.

Макрокоманда

SETPASSALL
указывает, что все типы сообщений должны пересылаться приложению, а макрокоманда
SETBLOCKALL
— что никакие сообщения не должны посылаться приложениям. По умолчанию при создании символьного сокета ICMPv6 подразумевается, что все типы ICMP-сообщений пересылаются приложению.

Макрокоманда

SETPASS
определяет конкретный тип сообщений, который должен пересылаться приложению, а макрокоманда
SETBLOCK
блокирует один конкретный тип сообщений. Макрокоманда
WILLPASS
возвращает значение 1, если определенный тип пропускается фильтром. Макрокоманда
WILLBLOCK
возвращает значение 1, если определенный тип блокирован фильтром, и нуль в противном случае.

В качестве примера рассмотрим приложение, которое будет получать только ICMPv6-извещения маршрутизатора:

struct icmp6_filter myfilt;

fd = Socket(AF_INET6, SOCK_RAW, IPPROTO_ICMPV6);

ICMP6_FILTER_SETBLOCKALL(&myfilt);

ICMP6_FILTER_SETPASS(ND_ROUTER_ADVERT, &myfilt);

Setsockopt(fd, IPPROTO_ICMPV6, ICMP6_FILTER, &myfilt, sizeof(myfilt));

Сначала мы блокируем все типы сообщений (поскольку по умолчанию все типы сообщений пересылаются), а затем разрешаем пересылать только извещения маршрутизатора. Несмотря на то, что мы используем фильтр, приложение должно быть готово к получению всех типов пакетов ICMPv6, потому что любые пакеты ICMPv6, полученные между вызовами

socket
и
setsockopt
, будут добавлены в очередь на сокете. Параметр
ICMP6_FILTER
— лишь средство оптимизации условий функционирования приложения.

28.5. Программа ping

В данном разделе приводится версия программы

ping
, работающая как с IPv4, так и с IPv6. Вместо того чтобы представить известный доступный исходный код, мы разработали оригинальную программу, и сделано это по двум причинам. Во-первых, свободно доступная программа
ping
страдает общей болезнью программирования, известной как «ползучий улучшизм» (стремление к постоянным ненужным усложнениям программы в погоне за мелкими улучшениями): она поддерживает 12 различных параметров. Наша цель при исследовании программы
ping
в том, чтобы понять концепции и методы сетевого программирования и не быть при этом сбитыми с толку ее многочисленными параметрами. Наша версия программы
ping
поддерживает только один параметр и занимает в пять раз меньше места, чем общедоступная версия. Во-вторых, общедоступная версия работает только с IPv4, а нам хочется показать версию, поддерживающую также и IPv6.

Действие программы ping предельно просто: по некоторому IP-адресу посылается эхо-запрос ICMP, и этот узел отвечает эхо-ответом ICMP. Оба эти сообщения поддерживаются в обеих версиях — и в IPv4, и в IPv6. На рис. 28.1 приведен формат ICMP-сообщений.

Рис. 28.1. Формат сообщений эхо-запроса и эхо-ответа ICMPv4 и ICMPv6

В табл. А.5 и А.6 приведены значения поля тип( type) для этих сообщений и говорится, что значение поля код( code) равно нулю. Далее будет показано, что в поле идентификатор( identifier) указывается идентификатор процесса

ping
, а значение поля порядковый номер (sequence number) увеличивается на 1 для каждого отправляемого пакета. В поле дополнительные данные( optional data) сохраняется 8-байтовая отметка времени отправки пакета. Правила ICMP-запроса требуют, чтобы идентификатор, порядковый номери все дополнительные данные возвращались в эхо-ответе. Сохранение отметки времени отправки пакета позволяет вычислить RTT при получении ответа.

Поделиться:
Популярные книги

Ваантан

Кораблев Родион
10. Другая сторона
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Ваантан

Все не случайно

Юнина Наталья
Любовные романы:
современные любовные романы
7.10
рейтинг книги
Все не случайно

Академия

Кондакова Анна
2. Клан Волка
Фантастика:
боевая фантастика
5.40
рейтинг книги
Академия

Я еще не барон

Дрейк Сириус
1. Дорогой барон!
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Я еще не барон

Варлорд

Астахов Евгений Евгеньевич
3. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Варлорд

Ищу жену для своего мужа

Кат Зозо
Любовные романы:
любовно-фантастические романы
6.17
рейтинг книги
Ищу жену для своего мужа

Чиновникъ Особых поручений

Кулаков Алексей Иванович
6. Александр Агренев
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Чиновникъ Особых поручений

Хозяйка старой усадьбы

Скор Элен
Любовные романы:
любовно-фантастические романы
8.07
рейтинг книги
Хозяйка старой усадьбы

Законы Рода. Том 2

Flow Ascold
2. Граф Берестьев
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 2

Сиротка

Первухин Андрей Евгеньевич
1. Сиротка
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Сиротка

Sos! Мой босс кровосос!

Юнина Наталья
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Sos! Мой босс кровосос!

LIVE-RPG. Эволюция-1

Кронос Александр
1. Эволюция. Live-RPG
Фантастика:
социально-философская фантастика
героическая фантастика
киберпанк
7.06
рейтинг книги
LIVE-RPG. Эволюция-1

Играть, чтобы жить. Книга 1. Срыв

Рус Дмитрий
1. Играть, чтобы жить
Фантастика:
фэнтези
киберпанк
рпг
попаданцы
9.31
рейтинг книги
Играть, чтобы жить. Книга 1. Срыв

Страж. Тетралогия

Пехов Алексей Юрьевич
Страж
Фантастика:
фэнтези
9.11
рейтинг книги
Страж. Тетралогия