Чтение онлайн

на главную

Жанры

Шрифт:

Ряд чисел 1, 2, 3, 4, 5, 6, 7, 8… называется натуральным, а сами эти числа — натуральными. Возник этот ряд чисел в древности как результат счета предметов. Натуральный ряд чисел не скучен и не однообразен, о нем еще не все известно. Уже в Древней Греции математики заметили интереснейшие свойства натуральных чисел. Одни из этих свойств просто любопытны, другие — имеют научное значение. Так, например, интересны числа 135 и 144. 135 = (1+3+5)x1x3x5, также 144 = (1+4+4)x1x4x4, то есть эти числа равны произведению своих цифр на их сумму.

А разве не поразительно, что сумма кубов натурального ряда чисел, начиная с 1, всегда равна квадрату суммы этих чисел. В самом деле, 13+ 23+33=1+8+27=36 и (1+2+3)2= 62=36. А занимается ли наука изучением натурального ряда чисел и свойств его или только чудаки-любители

выискивают удивительное и необыкновенное в ряду «обычных» чисел? Тайны натурального ряда чисел привлекали виднейших математиков мира. Ими занимается теория чисел. Удивительная это наука! Формулировки доступны пятиклассникам, а решения их так сложны, что не найдены, хотя ими занимались крупнейшие математики, и не одно столетие. Видный ученый прошлого века Карл Фридрих Гаусс назвал арифметику царицей математики. Он имел в виду не школьный курс арифметики, а теорию чисел, которую иногда называют высшей арифметикой.

Известный немецкий математик Герман Минковский мечтал, что и «самая изысканная арифметика будет торжествовать в области физики и химии, когда, например, окажется, что существеннейшие свойства вещества аналогичны с разбиением простых чисел на сумму двух квадратов». Советский математик академик Б. Н. Делоне подтвердил мысль Г. Минковского: «Сейчас эта абстрактная область математики неожиданно мощно вторгается в самые различные отрасли науки. Она нашла применение в кристаллографии при исследовании решеток кристаллов. Теория чисел помогает решать проблемы теории информации и в сотни раз сокращать затраты машинного времени при решении специальных- задач».

Какие же проблемы решает теория чисел? Это, например; проблема простых и совершенных чисел. Чем как раз и занимался странный священник с Урала Иван Михеевич Первушин…

Еще в училище он заметил: простые числа размещены в ряду натуральных чисел крайне неравномерно, то густо, то пусто. Учитель рассказал ему, что относительное число простых чисел постепенно уменьшается, что имеются такие множества натуральных последовательных чисел, среди которых нет ни одного простого числа, несмотря на то, что эти множества содержат миллион, миллиард и больше чисел. Тогда в голове у Вани и зародилась мысль, что количество простых чисел ограничено, следовательно, должно быть самое «последнее» простое число. Так казалось мальчику. Рассуждения учителя закономерно наталкивали Ваню на такую мысль. Мальчик хотел найти это громадное число. И только прочитав монографии П. Л. Чебышева «Об определении числа простых чисел, не превышающих данной величины» и «О простых числах», Первушин понял: его поиски наибольшего простого числа ни к чему и не могли привести. Такого числа нет. Множество простых чисел неограниченно.

С этой задачей было покончено, но простые числа все равно не давали ему покоя. Они притягивали.

Первушин знал, что многие математики старались раскрыть закономерность распределения простых чисел в ряду натуральных, но это им не удалось сделать. Было много гипотез, но при тщательной проверке они оказались неверными. Ошибались не только начинающие математики, но и авторитетнейшие ученые.

Один из творцов аналитической геометрии, теории вероятностей и теории чисел, известный французский математик Пьер Ферма в 1639 году высказал предположение о том, что числа вида 22n+1 являются простыми при любых целых неотрицательных значениях «n», то есть эта формула — как бы «генератор» простых чисел. На самом деле, при n=0 мы получаем просто число 3, при n=1 — простое число 5, при n=2 — простое число 17, при n=3 — простое число 257, при n=4 — простое число 65537. Ферма утверждал, что и при любых других натуральных значениях «n» «генератор» будет давать только простые числа. При n=5 он получил число 4294967297. Ученый был убежден, что и это число простое, но доказать свое предположение он не смог. Только в 1733 году, то есть через 94 года после того, как Ферма высказал свое предположение, выдающийся русский математик, академик Леонард Эйлер доказал, что при n=5 «генератор» Ферма не срабатывает, получившееся число — составное. Ферма ошибся. Может быть, это единственная осечка «генератора», — подумали ученые (авторитет Ферма был достаточно высок). Нет, не единственная.

Прошло почти 150 лет после открытия Эйлера, и математиков мира поразила новость. «Генератор» Ферма не срабатывал также и при n=12 и при n=23. На этот раз покой математиков нарушил безвестный священник из уральского села Замараевского Иван Михеевич Первушин. Этот упрямый человек решил задачу, над решением которой ломали голову известнейшие математики, задачу, которую не смог решить великий Ферма.

В ноябре 1877 года вице-президент Петербургской Академии наук, известный математик Виктор Яковлевич Буняковский получил письмо, в котором далекий уральский корреспондент сообщал: 2212+1 — составное и один из делителей его равен 114689. А позже тот же корреспондент сообщил Буняковскому, что и число 2223+1 тоже составное и один из делителей его равен 167772161. Проверку делимости первого числа Первушина провел сам Буняковский, второго — профессор Егор Иванович Золотарев. Стало ясно: Первушин прав. Сенсация! Академик В. Я. Буняковский в донесении в отделение физико-математических наук Академии по поводу первой записки Первушина сказал: «По моему мнению, факт о новом случае делимости чисел вида 22n+1 не лишен научного интереса для занимающихся теорией чисел и, желательно, чтоб он получил гласность». Академия поручила Буняковскому составить заметку. Что он и сделал. Эта заметка была опубликована на русском языке в «Записках Академии» и на французском языке в «Бюллетене Академии наук». Заметки были опубликованы вовремя, ибо через два месяца в записках Туринской Академии наук Италии была опубликована статья французского математика Э. Люка, в которой он приводит этот же случай делимости. Приоритет Первушина не вызывал сомнения. Наконец, о математике с Урала заговорили в академических кругах как о крупном даровании, как о человеке фантастического трудолюбия. Сколько сил и времени надо было затратить, доказывая делимость этих чисел! Чтобы хоть немного почувствовать это — достаточно знать, что в числе 2223+1 2525223 цифры.

Только одержимый человек мог оперировать такими громадными числами и добиваться при этом выдающихся успехов!

Первушина влекли и совершенные числа.

Если сложить все делители натурального числа, но не равные этому числу, то эта сумма в одном случае будет меньше самого числа, а в другом — больше. Например, сумма делителей числа 8 равна 1+2+4=7, то есть меньше 8, а сумма делителей числа 12 равна 1+2+3+4+6=16, то есть больше 12. Естественно, возникает вопрос о существовании таких чисел, сумма делителей которых равнялась бы этим числам. Такие числа есть. И называются они совершенными.

Еще в Древней Греции знали совершенные числа 6 (1+2+3=6) и 28 (1+2+4+7+14=28). Известный древнегреческий математик Евклид нашел еще два совершенных числа 496 и 8128. Прошло 17 веков, и только в 1460 году было найдено пятое совершенное число — 33550336. В шестнадцатом веке были найдены шестое и седьмое совершенные числа. В 18 веке Леонард Эйлер нашел восьмое совершенное число. Вот оно: 2 305 843 008 139 952 128. Прав был древнегреческий математик Никомах Герасский, который, рассуждая о совершенных числах, писал: «Совершенные числа красивы. Но известно, что красивые вещи редки и немногочисленны, безобразные же встречаются в изобилии».

Прошло более ста лет после того, как Эйлер нашел восьмое совершенное число. 27 октября 1883 года вице-президент Петербургской Академии наук академик В. Я. Буняковский получил очередную корреспонденцию от уральского математика. На этот раз Первушин сообщил, что нашел девятое совершенное число. Это число громадно и содержит 37 цифр. Для этого пришлось ему доказать, что число 261–1 — простое. Оно равно 2 305 843 009 213 693 951. Долгое время это было самым большим из известных простых чисел. В математике это число в честь первооткрывателя названо Числом Первушина. Уму непостижимо, как мог он «вручную» найти гигантское число. Выдающийся французский математик друг Декарта и Ферма, один из основателей Парижской Академии наук Марен Мерсенн говорил, что вечности не хватит для проверки простоты числа, имеющего 15–20 десятичных знаков. А в числе Первушина их 37!

Советский историк математики профессор И. Я. Депман так сказал по этому поводу: «И. М. Первушин, вычислив девятое совершенное число, поистине совершил настоящий подвиг».

Получив письмо Первушина, петербургские академики растерялись. Уральский математик, как всегда, сообщал им только результат своих вычислений без каких-либо выкладок и объяснений, а проверить результат никто не решался. Академик Буняковский просил Первушина сообщить, каким методом получил он результаты. Буняковский предложил Первушину объединить разрозненные записки в монографии, где были бы изложены не только результаты, но и доказательства в доступной форме. Но Первушин, по-видимому, был другого мнения. Несмотря на то, что сам писал: «Дорога не только сама истина, но и дорога к ней», он почему-то никогда не показывал эту дорогу. Он не рассказывал никому, как добивался своих выдающихся результатов. Может быть, ему мешала на высоком научном уровне изложить свои выкладки недостаточная математическая подготовка? Первушин достиг выдающихся математических результатов благодаря математической интуиции. Вот факт. Предлагая казанскому математическому обществу решить какую-то задачу по теории чисел, Иван Михеевич писал: «Обществу не угодно ли будет взять на себя труд вышеозначенную задачу решить теоретически прежде, чем я ее решу через 20 лет практически». В этих словах, как нам кажется, весь Первушин как математик.

Поделиться:
Популярные книги

Гром над Империей. Часть 1

Машуков Тимур
5. Гром над миром
Фантастика:
фэнтези
5.20
рейтинг книги
Гром над Империей. Часть 1

Камень Книга седьмая

Минин Станислав
7. Камень
Фантастика:
фэнтези
боевая фантастика
6.22
рейтинг книги
Камень Книга седьмая

Ох уж этот Мин Джин Хо 2

Кронос Александр
2. Мин Джин Хо
Фантастика:
попаданцы
5.00
рейтинг книги
Ох уж этот Мин Джин Хо 2

Все не случайно

Юнина Наталья
Любовные романы:
современные любовные романы
7.10
рейтинг книги
Все не случайно

Газлайтер. Том 2

Володин Григорий
2. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 2

Ритуал для призыва профессора

Лунёва Мария
Любовные романы:
любовно-фантастические романы
7.00
рейтинг книги
Ритуал для призыва профессора

Золотая осень 1977

Арх Максим
3. Регрессор в СССР
Фантастика:
альтернативная история
7.36
рейтинг книги
Золотая осень 1977

Камень. Книга шестая

Минин Станислав
6. Камень
Фантастика:
боевая фантастика
7.64
рейтинг книги
Камень. Книга шестая

Генерал Империи

Ланцов Михаил Алексеевич
4. Безумный Макс
Фантастика:
альтернативная история
5.62
рейтинг книги
Генерал Империи

Мама из другого мира. Дела семейные и не только

Рыжая Ехидна
4. Королевский приют имени графа Тадеуса Оберона
Любовные романы:
любовно-фантастические романы
9.34
рейтинг книги
Мама из другого мира. Дела семейные и не только

Путь Шамана. Шаг 4: Призрачный замок

Маханенко Василий Михайлович
4. Мир Барлионы
Фантастика:
фэнтези
рпг
попаданцы
9.41
рейтинг книги
Путь Шамана. Шаг 4: Призрачный замок

Отмороженный

Гарцевич Евгений Александрович
1. Отмороженный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Отмороженный

Идеальный мир для Социопата 7

Сапфир Олег
7. Социопат
Фантастика:
боевая фантастика
6.22
рейтинг книги
Идеальный мир для Социопата 7

Бестужев. Служба Государевой Безопасности

Измайлов Сергей
1. Граф Бестужев
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Бестужев. Служба Государевой Безопасности