В поисках чуда (с илл.)
Шрифт:
Радиолампам по причине их слабосильности долго и упорно отказывали в видах на сколько-нибудь значительное будущее. И вдруг в октябре 1919 года довольно странно прозвучало заявление, что они вопреки всеобщему скепсису со временем сыграют «весьма важную роль».
Это интересное пророчество высказал М. А. Бонч-Бруевич, который еще в 1915 году сконструировал первую в России вакуумную электронную лампу.
Семимильными шагами двинулась вперед наша электровакуумная промышленность после революции. В 1920 году на Ходынке уже эксплуатировался радиопередатчик, собранный на отечественных лампах. А через три года пришел заказ от знаменитой немецкой фирмы «Телефункен»
Однако при освоении диапазона УКВ королева радиотехники, быстро завоевавшая симпатии во всем мире, внезапно объявила саботаж. Почему? Вспомните ее классическую схему: катод, анод, а между ними сетка. Промежуточный электрод добавлен для того, чтобы управлять электронами, несущимися от катода к аноду. Он играет роль шлюза, способного то задерживать поток частиц, то подгонять его, — так рождаются колебания. Длинноволновые и коротковолновые. По сравнению с их периодом время пробега электронов от катода к аноду пренебрежимо мало. Но при столь быстрых изменениях электромагнитного поля, как в области УКВ, система отказывает — здесь проявляется ее неповоротливость.
В 1935 году А. Н. Арсеньева построила первые электровакуумные приборы, исправно работавшие на сверхвысоких частотах, при которых классическая радиолампа бастовала, «захлебывалась». Так появился генератор, названный «клистроном» (в переводе с греческого — «морской прибой»). В нем роль колебательных контуров с их конденсаторами и катушками индуктивности, подключаемыми к обычному триоду снаружи, исполняют объемные резонаторы — полые медные «бублики», которые вмонтированы прямо в корпус лампы. Они опоясывают кольцами продолговатый цилиндрический баллон, внутри которого непрерывно течет электронная струя; в ней (опять-таки с помощью сеток) искусственно возбуждается своего рода «рябь», причем сгущения и разрежения, вызванные ускорением и замедлением частиц, чередуются здесь гораздо стремительней, нежели в обычном ламповом генераторе.
В 1937–1939 годах В. Ф. Коваленко и Н. Д. Девятков изобрели клистрон нового типа — уже не пролетный, а отражательный. Здесь модуляцию электронного пучка осуществляет особое «зеркало», поворачивающее поток частиц вспять.
Наряду с «лампой морского прибоя» решающую роль в развитии радиолокации сыграл магнетрон. В нем электронный поток напоминает уже не «ручеек», а «водоворот», регулируется он не электрическим, а магнитным полем. Катод, сделанный в виде трубки, окружен здесь массивным металлическим футляром-анодом, в котором симметричной розеткой высверлены фигурные отверстия — резонаторы. В них электронными вихрями порождаются электромагнитные колебания. Опять-таки сверхвысокочастотные: подобно клистрону, магнетрон способен генерировать волны вплоть до миллиметровых.
Этот мощный многорезонаторный прибор, ставший образцом для его современных разновидностей, впервые сконструирован В. П. Илясовым в 1937–1939 годах. Одновременно свою схему такого же магнетрона предложили инженеры Н. Ф. Алексеев и Д. Е. Маляров. В 1940 году они подробно описали свое изобретение в открытой печати (англичане держали в строжайшем секрете подобные разработки, считая их не менее важными, чем создание атомной бомбы).
Аттестуя изобретение радара как величайшее достижение за последние полвека, Черчилль имел в виду его военное значение. Да, локатор помогал нашим союзникам и нам обезвреживать тучи огнехлещущей фашистской саранчи. Но разве на этом окончилась его миссия?
В 1944 году, когда незримый электромагнитный щуп участвовал в битвах на суше, на море, в воздухе, советские физики Л. И. Мандельштам и Н. Д. Папалекси уже думали о его мирной судьбе, о его космических маршрутах. Теоретическими расчетами они обосновали возможность лоцировать Луну, хотя эта надежда по тем временам казалась оторванной от реальной почвы, если не сказать — просто безумной: до нашего естественного спутника около 400 тысяч километров.
«Мир. СССР. Ленин»… Три дорогих нам слова. В ноябре 1962 года их принесли электромагнитные волны, отраженные Венерой. Впервые в мировой практике установлена радиотелеграфная связь с использованием «утренней звезды» в качестве зеркала.
«Англия. Радастра. Маклесфилд. Ловеллу. Будем работать по Венере 8 и 9 января с 11 до 14. Котельников». Буднично и лаконично: работать, вести исследования, устанавливая контакт через посредство планеты, а что, собственно, тут особенного? Такую телеграмму в начале 1966 года отправил академик Владимир Александрович Котельников, директор Института радиотехники и электроники АН СССР, профессору Бернарду Ловеллу, директору британской обсерватории Джодрелл Бэнк. Вскоре пришел ответ: «Москва. Аэлита. Сигнал от Венеры принят». Космический радиомост продолжает действовать.
Если вылить стакан кипятку в море с европейского берега, а потом зачерпнуть то же количество воды где-то у Кубы, удастся ли определить, как нагрелся Мировой океан? По расчетам члена-корреспондента АН СССР В. И. Сифорова, сигнал, даже самый мощный, вернувшись с Венеры, примерно в такой же степени растеряет свою энергию, постепенно растворится в шорохах вселенной, будет забит собственными шумами приемной аппаратуры. Чтобы выделить его, нужны архичувствительные приемники, остроумные радиотехнические схемы.
Не удивительно, что попытки лоцировать Венеру, предпринятые в 1958 году США и в 1959-м Англией, окончились неудачей. Но, может, их и не стоило продолжать? Какой, собственно, прок от этой затеи?
В 1957 году советский спутник открыл эру освоения вселенной. Автоматические станции отправились к далеким планетам. Между тем точность, с какой астрономам известны расстояния до ближайших небесных тел и вообще масштабы солнечной системы, не удовлетворяет сегодняшнюю космонавтику. Погрешность в 0,2 процента вроде бы невелика. А ведь она, если речь идет о дистанции между Землей и Венерой, оборачивается доброй сотней тысяч километров! При запуске с такой ошибкой промах гарантирован. Только «радиодальномер» способен выручить в создавшейся ситуации. Однако этим не ограничиваются выгоды от локации.
«М. В. Ломоносов открыл, что Венера окружена атмосферой, — говорится в энциклопедии. — Период вращения Венеры вокруг оси точно не установлен». Да потому и не установлен, что окружена, и не просто атмосферой, а «знатной» пеленой облаков. Оптические методы наблюдения тут вынуждены спасовать. Луч же радара пронзает облака и туманы. О чем он может рассказать?
Космическое эхо рассказало, например, что суточное вращение у Венеры происходит не так, как у Земли и прочих планет солнечной системы: несется-то она по околосолнечной орбите вперед, а вот кружится при этом не как шар, катящийся от вас по бильярдному столу, а назад (так противоестественно ведут себя иногда колеса автомобиля на киноэкране). Это открытие член-корреспондент АН СССР И. С. Шкловский считает выдающимся достижением астрономии. Что же касается периода вращения, то, по последним данным, он составляет 247 суток 8 часов.