В просторы космоса, в глубины атома [Пособие для учащихся]
Шрифт:
Разные циклы в принципе могут давать разный вклад в солнечную энергетику — все зависит от неизвестных нам пока конкретных условий, и прежде всего от температуры и давления в солнечных недрах. Так, в частности, считается, что на углеродный цикл сейчас приходится всего 2–3 % излучаемой энергии, но его роль резко возрастет немного позже, через 2–3 млрд. лет, когда температура Солнца заметно повысится. А пока роль главного поставщика солнечной энергии отводится водородному циклу, который всегда начинается с так называемой рр– реакции — со слияния двух ядер водорода, т. е. двух протонов (они обозначаются буквой р), в ядро дейтерия. Реакция эта сопровождается выбрасыванием позитрона и нейтрино.
Действие четвертое.Обнаруживается чрезвычайно важная особенность рр–
Для того чтобы два водородных ядра, два протона, слились в ядро гелия, они обязательно должны сильно сблизиться, должны столкнуться. Но этого мало — должно еще произойти некое не очень понятное пока «нечто», которое как раз и называют слабым взаимодействием. Происходит такое «нечто» чрезвычайно редко — вы много раз сильно хлопаете дверью, пока наконец легонько срабатывает защелка замка и дверь захлопывается. Применительно к солнечной рр– реакции возможны такие цифры: на каждые 1050 столкновений двух протонов в среднем приходится одно рождение ядра дейтерия; протон в среднем 2 млрд лет ждет своего включения в дейтерий. Подобная инертность слабых взаимодействий— это созданный природой своего рода защитный механизм, оберегающий Солнце от взрыва, — протонов много, сталкиваются они часто, но в каждый данный момент очень малая их часть совершает слабое взаимодействие, вступает в рр– реакцию. И поэтому Солнце не взрывается, а как бы тлеет, растягивая свои энергетические ресурсы на миллиарды лет.
В ядре дейтерия две тяжелые частицы — протон и нейтрон: перед рр– реакцией было два протона, один остался сам собой, а второй превратился в нейтрон и именно в результате слабого взаимодействия. При этом родились две новые частицы — позитрон, который унес положительный заряд протона, и нейтрино. У нейтрино нет ни ощутимой массы, ни электрического заряда, оно рождено слабыми взаимодействиями и только в них может участвовать.
Действие пятое. Настойчивый Рэй Девис дает повод для острых споров о втором солнечном кризисе. Тщательно отработанные гипотезы солнечных циклов — это пока лишь гипотезы. И у нас, у землян, пока есть только одна возможность убедиться в том, что гипотетические ядерные циклы действительно идут на Солнце. Эта возможность — изучение нейтрино, рожденных в солнечных термоядерных реакциях и добравшихся до Земли. Только нейтрино, безразличные ко всему, почти никогда не вступающие в контакты с веществом (частицы слабых взаимодействий!), могут вырваться из солнечных глубин, где как раз полыхает термоядерное топливо, идет превращение водорода в гелий. Никакие другие известные нам гонцы, кроме нейтрино, ни электромагнитные волны, ни разнообразные атомные частицы, не могли бы пройти сквозь толщу Солнца и принести на Землю сообщения о том, что в действительности происходит в недрах нашей звезды.
Но если нейтрино так легко проходят сквозь все и вся, то как можно их обнаружить на Земле? В какие сети поймать? В 1946 г. молодой в то время физик, ныне академик, лауреат Ленинской премии Бруно Максимович Понтекорво предложил хлор-аргоновый метод регистрации нейтрино, на основе которого развились нынешние системы детектирования (обнаружения) этих неуловимых частиц. Сущность метода состоит в следующем: некоторые нейтрино, попав в атомы вещества, все же взаимодействуют с их ядрами; при этом один из нейтронов ядра, выбросив электрон, превращается в протон; число положительных зарядов в ядре увеличивается на единицу; атом передвигается в следующую клеточку таблицы Менделеева; это значит, что происходит рождение нового химического элемента, т. е. именно то, о чем мечтали средневековые алхимики. Вот так нейтрино может превратить атом хлора-37 в атом аргона-37 (рис. 6 на цветной вклейке). Выделив из хлора атомы аргона и посчитав их, мы узнаем число нейтрино, пойманных веществом.
Почти через 10 лет после того, как был предложен этот метод, американский физик Рэй Девис построил первую установку с хлор-аргоновым детектором для регистрации нейтрино, вылетающих из атомного реактора. Основой установки был бак на 12 т перхлорэтилена — хлористого соединения, для которого была отработана технология извлечения атомов аргона-37. Первые же результаты, полученные на новой установке, оказались совершенно неожиданными — никаких нейтрино вообще не было обнаружено. Позже, через несколько лет, этому нашли объяснение — в реакторе образуются антинейтрино, а не нейтрино. Но еще до того, во времена, когда многие компетентные люди считали, что нужно бросить это пустое хлор-аргоновое предприятие, Девис, продемонстрировав пример удивительной целеустремленности, начал создание новой, значительно более крупной установки с 600-тонным перхлорэтиленовым детектором. Установка в этот раз была рассчитана на регистрацию солнечных нейтрино, строилась она 4 года, и в 1968 г. пошли первые результаты измерений. Эти результаты тоже были отрицательными — профессор Девис солнечных нейтрино не обнаружил.
Результаты Девиса, конечно же, вызвали поток идей и мнений, в том числе и самых экстремальных. Кое-кто считал, что наступил второй солнечный кризис, что нужно полностью отказаться от термоядерных циклов и признать свою полную несостоятельность — в звездах, в частности в Солнце, действуют какие-то незнакомые нам источники энергии. А может быть, там горит вакуум… Или полыхает время… Или тлеет еще какое-нибудь неизвестно что. И другая крайность — результаты Девиса вообще нельзя принимать всерьез. Где гарантия, что из детектора извлекается весь аргон? Может быть, атомы аргона просто «прилипают» к хлору и мы, таким образом, не получаем вообще никакой информации о действии нейтрино…
Что касается экспериментальной «грязи», то Девис, кажется, сделал все возможное, чтобы исключить ее. Он, например, поштучно вводил в бак атомы аргона-37, а затем извлекал их почти все до одного. Или превращал хлор в аргон, но уже не с помощью нейтрино, а совсем другим, тщательно контролируемым способом, и опять-таки извлекал все атомы, которые должны были появиться согласно расчетам. Кое-кто из скептиков еще пытается раздуть уголек сомнений, но вряд ли из "него разгорится пламя, способное ликвидировать проблему. И в то же время пока никак не скажешь, что проблема солнечных нейтрино переросла во второй солнечный кризис.
Действие шестое. Неожиданный результат нейтринных экспериментов пока может привести к одному только выводу — нужно работать. Начнем с того, что Девис, повысив точность метода, все же обнаружил нейтрино, хотя и в чрезвычайно малом количестве, пока оно согласуется с моделями Солнца не на много лучше, чем прежнее «ничего». Вместе с тем теоретики пересмотрели эти модели и заметно снизили свои требования касательно нейтринных потоков. Началось также конструктивное обсуждение некоторых, как казалось раньше, слишком смелых гипотез, которые могли бы объяснить низкий уровень нейтринных потоков, регистрируемых на Земле.
Одна из таких гипотез предполагает, что в недрах Солнца периодически происходит резкое перемешивание вещества, температура падает, интенсивность термоядерных реакций уменьшается, а значит, уменьшается и поток нейтрино. Если принять эту гипотезу, то Девису просто не повезло, не в ту эпоху он занялся измерениями — надо было взяться за это дело на несколько миллионов лет раньше или на несколько миллионов лет позже.
Снижение солнечной активности после перемешивания сказывается на тепловом режиме планет, возможно, именно оно и было причиной ледниковых периодов на Земле. При этом нужно учесть, что нейтрино быстро, без задержки пробираются через Солнце (слабые взаимодействия!), а тепловые излучения движутся к поверхности Солнца очень медленно.