В защиту науки (3)
Шрифт:
Однако опровергать законы природы — дело тяжёлое и неблагодарное, требующее незаурядной ловкости рук.
Второй закон термодинамики гласит, что если холодное тело и горячее привести в соприкосновение, то холодное нагреется, а горячее остынет — и никогда наоборот! Как должно было бы выглядеть нарушение этого закона броуновской частицей? Напомню, что броуновское движение — это наблюдаемое в микроскоп самопроизвольное беспорядочное движение мелких пылинок. Чтобы говорить о нарушении второго начала термодинамики в этом случае, требовалось бы установить, что броуновскаяя частица нагревается, отбирая тепло у жидкости. Разумеется, этого не происходит, они находятся при одной температуре. Почему же наш философ говорит о нарушении закона природы? Читаем дальше.
Посмотрим,
Это чрезвычайно путаное объяснение расшифровать можно только предположительно. В пункте (б) говорится, по-видимому, о сохранении энергии. Закон сохранения энергии — это первый закон термодинамики. Таким образом, Фейерабенд утверждает, что если бы можно было непосредственно проверить выполнение первого закона термодинамики в случае броуновской частицы, это опровергло бы второй закон термодинамики. Разумеется, это абсолютная чепуха.
Какой же вывод делается из всего этого?
Поэтому «прямое» опровержение второго закона термодинамики, которое опиралось бы только на «феноменологическую» теорию и «факт» броуновского движения, невозможно. Оно невозможно вследствие структуры мира, в котором мы живём, и в силу законов, справедливых в этом мире.
В самом деле, прямое опровержение законов, справедливых в мире, в котором мы живём, невозможно в силу законов, справедливых в этом мире. О, философия!..
И, как хорошо известно, действительное опровержение этого закона было получено совершенно иным образом: оно было получено с помощью кинетической теории и благодаря её использованию Эйнштейном при вычислении статистических свойств броуновского движения. При этом феноменологическая теория (T) была включена в более широкий контекст статистической физики (T) таким образом, что условие совместимости было нарушено, и лишь после этого был поставлен решающий эксперимент (исследования Сведберга и Перрина).
А вот здесь мы сталкиваемся с ещё одной упрямо повторяющейся темой. Здесь утверждается, что феноменологическая термодинамика (теория тепловых явлений, оперирующая понятиями температуры, давления, количества тепла и т. п., но не связывающая их с молекулярным строением вещества) была опровергнута статистической физикой (теорией теплоты как молекулярного движения). Между тем любой физик скажет вам, что статистическая термодинамика, наоборот, обосновала феноменологическую. Совершенно аналогичным образом философы считают, что, например, теория относительности опровергла ньютоновскую динамику, а физики — что доказала. Как возможно такое фундаментальное расхождение во взглядах? В этом мы попробуем разобраться на примере из Куна.
Надо сразу сказать, что Кун грамотнее и Лакатоса, и тем более Фейерабенда в том, что касается понимания физики. Цитировать здесь придётся больше.
Наиболее известным и ярким примером, связанным со столь ограниченным пониманием научной теории, является анализ отношения между современной динамикой Эйнштейна и старыми уравнениями динамики, которые вытекали из «Начал» Ньютона. С точки зрения настоящей работы, эти две теории совершенно несовместимы в том же смысле, в каком была показана несовместимость астрономии Коперника и Птолемея: теория Эйнштейна может быть принята только в случае признания того, что теория Ньютона ошибочна. Но сегодня приверженцы этой точки зрения остаются в меньшинстве. Поэтому мы должны рассмотреть наиболее распространённые возражения против неё.
Кун — методолог, и мотивировка его «Структуры научных революций» методологическая. Отсюда его склонность к нормативным утверждениям вроде «теория… может быть принята только в случае…». Выглядит это так, будто он представляет некий отдел технического контроля, который решает, принять ли теорию или забраковать. К сожалению, методологи науки решительно ограничиваются теми случаями, когда решение уже принято без них. Мне не приходилось встречать работ, в которых методологи рассматривали бы современные конкурирующие теории в области элементарных частиц или космологии и заключали, какие из них предпочтительнее с методологической точки зрения. (Впрочем, см. статью M. Massimi "What Demonstrative Induction Can Do Against the Threat of Underdetermination: Bohr, Heisenberg, and Pauli on Spectroscopic Anomalies (1921–1924)", в которой, судя по резюме, делается вполне честная попытка проверить методологическую теорию на реальных опытных данных.)
Итак, Кун рассматривает доводы против идеи о несовместимости теории относительности с классической механикой:
Суть этих возражений может быть сведена к следующему. Релятивистская динамика не может показать, что динамика Ньютона ошибочна, ибо динамика Ньютона всё ещё успешно используется большинством инженеров и, в некоторых приложениях, многими физиками. Кроме того, правильность этого использования старой теории может быть показана той самой теорией, которая в других приложениях заменила её. Теория Эйнштейна может быть использована для того, чтобы показать, что предсказания, получаемые с помощью уравнений Ньютона, должны быть настолько надёжными, насколько позволяют наши измерительные средства во всех приложениях, которые удовлетворяют небольшому числу ограничительных условий.
Примерно правильно, но я бы выразил это более решительно и сжато: (1) уравнения динамики Ньютона выводятся из уравнений теории относительности в пределе малых скоростей, (2) поэтому все наличные свидетельства в пользу классической механики автоматически становятся свидетельствами в пользу теории относительности, (3) а всякий, кто претендует на опровержение классической механики, должен сначала опровергнуть теорию относительности.
Таким образом, будучи включена в теорию относительности как её частный случай, классическая механика Ньютона становится неопровержимо доказанной.
Вернёмся к Куну. Что же он может возразить против приведённых выше аргументов? Я пропущу некоторое количество второстепенных рассуждений и процитирую самый главный пункт.
Очевидно, что ньютоновская динамика выводится из динамики Эйнштейна при соблюдении нескольких ограничивающих условий. Тем не менее такое выведение представляет собой передержку, по крайней мере в следующем. Хотя предложения (выведенной из теории относительности динамики Ньютона. — Д.М.) являются специальным случаем законов релятивистской механики, всё же они не являются законами Ньютона. Или по крайней мере они не являются таковыми, если не интерпретируются заново способом, который стал возможным после работ Эйнштейна. Переменные и параметры, которые в серии предложений, представляющей теорию Эйнштейна, обозначают пространственные координаты, время, массу и т. д., всё также содержатся в (выведенной динамике Ньютона. — Д.М), но они всё-таки представляют эйнштейновское пространство, массу и время. Однако физическое содержание эйнштейновских понятий никоим образом не тождественно со значением ньютоновских понятий, хотя и называются они одинаково. (Ньютоновская масса сохраняется, эйнштейновская может превращаться в энергию. Только при низких относительных скоростях обе величины могут быть измерены одним и тем же способом, но даже тогда они не могут быть представлены одинаково.) Если мы не изменим определения переменных в (выведенной из теории относительности динамике малых скоростей. — Д.М), то предложения, которые мы вывели, не являются ньютоновскими. Если мы изменим их, то мы не сможем, строго говоря, сказать, что вывели законы Ньютона, по крайней мере в любом общепринятом в настоящее время смысле понятия выведения.