Чтение онлайн

на главную - закладки

Жанры

Шрифт:

Из многих разновидностей колебательных систем нас сейчас интересует один класс, типичным представителем которого является гитарная струна. Прежде всего отметим: чтобы в подобной системе возникли колебания, ей нужно передать некоторое количество энергии — для того, чтобы струна пришла в движение, ее нужно сдвинуть с места. Но это еще не все.

Система должна иметь, как минимум, два накопителя энергии, точнее говоря, уметь сохранять полученную энергию, как минимум, в двух взаимосвязанных видах. Так. в частности, когда мы натягиваем струну, она запасает потенциальную энергию за счет упругой деформации металла. Когда же струна движется, то она, как всякое движущееся тело, обладает некоторым запасом

кинетической энергии. Взаимная связь этих видов энергии очевидна — потенциальная энергия может переходить в кинетическую, кинетическая — в потенциальную.

Но и это еще не все.

Система должна иметь положение устойчивого равновесия — в нашем примере это средняя линия, нейтральное положение струны. Относительно этого устойчивого состояния происходят отклонения в ту или иную сторону, происходят колебания. В их основе лежит переход энергии из одного вида в другой, непрерывный обмен энергией между двумя накопителями, например, между упругостью струны и ее массой.

Струна натянута, и первый накопитель — упругость — получил определенную порцию энергии. Теперь отпустите струну — она стремится вернуться в устойчивое состояние и движется по направлению к средней линии. При этом натяжение струны уменьшается, и первый накопитель теряет запасенную энергию, она переходит во власть второго накопителя — массы, превращается в кинетическую энергию, энергию движения.

По мере приближения к средней линии скорость струны нарастает, ее кинетическая энергия увеличивается. Попав, наконец, в свое устойчивое положение, поравнявшись со средней линией, струна не может там удержаться и по инерции будет двигаться дальше. Остановка произойдет лишь тогда, когда энергия движения, связанная со вторым накопителем — массой, будет полностью израсходована. Но ведь в этот момент струна опять окажется изогнутой, правда, в противоположную сторону, но все-таки изогнутой, то есть опять окажется в неустойчивом состоянии, опять с запасом энергии упругой деформации! Поэтому, остановившись на какое-то мгновение, струна опять начнет двигаться, теперь уже в обратную сторону, потенциальная энергия снова будет переходить в кинетическую, а та в свою очередь, когда будет пройдена средняя линия, перейдет в потенциальную. Так будет продолжаться до тех пор, пока колебания не затухнут.

Во всякой реальной системе существуют потери энергии. В частности, струна преодолевает сопротивление воздуха, а также внутреннее трение, препятствующее ее изгибу. Постепенно потери «съедают» весь первоначальный энергетический запас. Чем больше потерн, чем большую часть своих запасов система должна затрачивать на их преодоление, тем, следовательно, быстрее закончатся обменные процессы: когда энергия израсходована, накопителям просто нечем обмениваться. При очень больших потерях колебания могут даже не возникнуть — например, маятник с очень сильным трением в подшипнике медленно приближается к средней линии и не в состоянии перейти через нее.

У колебательной системы есть особая характеристика — добротность. Она показывает, во сколько раз энергия, которую в процессе обмена захватывают накопители, больше энергии, теряемой безвозвратно в течение периода, например, превращаемой в тепло из-за трения в подшипниках маятника или излучаемой в виде звуковых волн колеблющейся струной.

Простая логика подсказывает, что чем меньше потери, то есть, чем выше добротность системы, тем дольше существуют колебания в ней, тем медленнее они затухают (рис. 25, в, г).

Ну и, наконец, еще два замечания, теперь уже относительно самого хода колебаний. Прежде всего отметим, что в простейшей колебательной системе график, описывающий ход процесса, скажем, отклонение маятника от средней линии или изменение его скорости — это почти синусоида. Чем меньше потери,

тем меньшее значение имеет это «почти». Сказанное относится к любым простейшим системам — механическим, тепловым, химическим, электромагнитным. Подобная универсальность синусоиды совсем не случайна, связана она с рядом особых математических свойств этой гармоничной кривой.

Время, в течение которого происходит полный цикл колебании, называется периодом, а число периодов за секунду — частотой.

Обе эти величины зависят от скорости колебательного процесса, от того, насколько быстро накопители обмениваются энергией, то есть, в конечном итоге, зависят от свойств, или, как принято говорить, от параметров этих накопителей. К примеру, частота колебаний струны зависит от ее упругости и массы. Чем массивнее струна, тем медленнее она набирает и сбрасывает скорость, тем меньше частота. Понижается частота и при уменьшении упругости, струна становится более вялой, она медленнее накапливает и отдает потенциальную энергию упругой деформации. Обе эти зависимости прекрасно иллюстрирует гитара — чем массивней, толще ее струна, тем медленней ее колебания, тем ниже частота звука. Кроме того, частота колебаний любой струны уменьшается, если ослабить ее натяжение, снизить упругость. Подобная зависимость частоты от параметров системы так же является универсальной и относится ко всем без исключения видам колебаний.

Начатый рассказ о колебательных процессах можно было бы продолжить, вспомнив о многих интересных системах, например, о периодических колебаниях планет, о многочисленных колебательных процессах в микромире, о сложных колебаниях, определяющих ритмы работы головного мозга, о гипотезе пульсирующей Вселенной. Однако, на все это у нас, к сожалению, нет времени. Нас ждет, то, из-за чего, собственно говоря, и был начат разговор о колебаниях. Нас ждет важнейшая электрическая цепь, без которой не обходится ни одни настоящий радиоприемник. Нас ждет знакомство с колебательным контуром.

Соединим конденсатор с катушкой индуктивности и введем в эту цепь — именно она и называется колебательным контуром — некоторое количество энергии. Сделать это можно двумя способами — зарядить конденсатор и таким образом создать в нем электрическое поле или же создать магнитное поле в катушке, пропустив через нее постоянный ток. В обоих случаях результат будет один — в системе начнутся электромагнитные колебания.

Допустим, энергия поступила в конденсатор (рис. 26).

Рис. 26

Стремясь к устойчивому состоянию, он разряжается, в цепи идет ток, и в катушке возникает магнитное поле. Ток не прекратится и после полного разряда конденсатора. Теперь уже двигать заряды будет убывающее магнитное поле — как и при всяком изменении магнитного поля, на катушке будет наведена э. д. с. самоиндукции, которая и поддержит ток в цепи. В результате заряды опять будут накапливаться на обкладках конденсатора и он опять окажется в неустойчивом состоянии, опять окажется заряженным, правда, теперь уже в противоположной полярности. Когда магнитное поле исчезнет, все повторится сначала — разряд конденсатора, ток, магнитное поле катушки — и снова перезарядка конденсатора. Таким образом и будет непрерывно происходить обмен энергией между двумя накопителями — конденсатором и катушкой… В результате этого обмена в цепи будет протекать переменный ток и на каждом из ее элементов будет действовать переменное напряжение.

Поделиться:
Популярные книги

Приручитель женщин-монстров. Том 7

Дорничев Дмитрий
7. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 7

Темный Лекарь 4

Токсик Саша
4. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 4

Младший сын князя

Ткачев Андрей Сергеевич
1. Аналитик
Фантастика:
фэнтези
городское фэнтези
аниме
5.00
рейтинг книги
Младший сын князя

Неудержимый. Книга VI

Боярский Андрей
6. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга VI

Сыночек в награду. Подари мне любовь

Лесневская Вероника
1. Суровые отцы
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Сыночек в награду. Подари мне любовь

Неудержимый. Книга XVII

Боярский Андрей
17. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XVII

Гром над Империей. Часть 1

Машуков Тимур
5. Гром над миром
Фантастика:
фэнтези
5.20
рейтинг книги
Гром над Империей. Часть 1

Возвышение Меркурия. Книга 3

Кронос Александр
3. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 3

Жандарм 4

Семин Никита
4. Жандарм
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Жандарм 4

Корсар

Русич Антон
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
6.29
рейтинг книги
Корсар

Сломанная кукла

Рам Янка
5. Серьёзные мальчики в форме
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Сломанная кукла

Отмороженный 3.0

Гарцевич Евгений Александрович
3. Отмороженный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Отмороженный 3.0

Крестоносец

Ланцов Михаил Алексеевич
7. Помещик
Фантастика:
героическая фантастика
попаданцы
альтернативная история
5.00
рейтинг книги
Крестоносец

Чужое наследие

Кораблев Родион
3. Другая сторона
Фантастика:
боевая фантастика
8.47
рейтинг книги
Чужое наследие