Век криминалистики
Шрифт:
[238]
правильном применении метода Стаса; в-третьих, что использование по меньшей мере шести цветовых реакций и - при необходимости - дополнительных физиологических проб абсолютно исключает всякую возможность принять растительный алкалоид за трупный.
Но важнее было то, что токсикология сделала первые шаги по пути поиска абсолютно безупречных методов обнаружения ядов, который к середине XX столетия привел к поразительным успехам.
Первым шагом на этом совершенно новом пути были поиски метода определения ядов по их кристаллам. Правда, еще Стас пытался осуществить идентификацию никотина посредством кристаллообразования, а американец Уормли в 1895 г. сообщил о проведении
Напряженная работа в течение пяти следующих десятилетий привела к открытию таких способов обнаружения алкалоидов, о которых не могли мечтать не только первооткрыватели цветовых реакций, но и сам Уилкокс. В немалой степени этому способствовало развитие фармацевтической химии и фармацевтической промышленности, которое началось во второй четверти XX века с того, что по мере исследования натуральных растительных алкалоидов были созданы искусственные синтетические продукты, похожие как по своему терапевтическому, так и по отравляющему эффекту на растительные алкалоиды или даже превосходящие их.
Итак, известные растительные яды пополнил настоящий поток "синтетических алкалоидов". Он еще больше усилился, когда в 1937 г. во Франции были выпущены первые антигистамины - искусственные активные вещества против аллергических заболеваний всех видов - от астмы до кожной сыпи. За несколько лет их число перевалило за две тысячи, и из этого количества по крайней мере несколько дюжин быстро приобрели широкую популярность как лекарства (и потенциальные яды). Они тоже являлись "искусственными алкалоидами", и им не было числа. Все это заставило судебных токсикологов стать наконец участниками постоянной борьбы между изготовлением новых ядов и открытием новых методов их обнаружения.
Открытый Стасом способ обнаружения алкалоидов был усовершенствован, а это во многих случаях привело к тому, что чистота экстратов достигла неслыханной, даже во времена Уилкокса, степени. Цветовые реакции тоже не потеряли своего значения.
[239]
Их число соответственно бурному увеличению числа ядов намного возросло.
Идентификация алкалоидов на основе определения точки их плавления получила дальнейшее развитие благодаря таким ученым, как Остеррайхер, Фишер, Брандштетер и Раймерс, а также не в последнюю очередь благодаря Людвигу Кофлеру, умершему в 1951 г. профессору фармакологии в Инсбруке. Кофлер создал аппарат для определения точки плавления, который позволял наблюдать плавление исследуемого вещества под микроскопом и одновременно засекать на термометре точку плавления этого вещества.
В этот же период в деле идентификации алкалоидов на основе их кристаллизации был достигнут совершенно явный прогресс. Англичанин Э. Кларк создал в Лондоне коллекцию не менее чем из пятисот кристаллических форм различных алкалоидов, чтобы сделать возможным быстрое сравнение с ними под микроскопом кристаллов неизвестных объектов исследования. Было опробовано около двухсот химических реактивов, с помощью которых можно было проводить кристаллизацию алкалоидных растворов.
Однако самый решительный прогресс связан с наукой, которая с середины XX столетия стала завоевывать себе все больше места в токсикологии, - с физикой. Немецкими учеными Робертом Вильгельмом Бунзеном и Густавом Кирхгофом в 1859 г. было положено начало тому направлению, которое привело к спектральному анализу при помощи видимых и невидимых лучей и к применению его в судебной медицине. С тех пор прошло более ста лет.
В 50-е годы XX в. такие токсикологи, как датчанин Т. Гаунг или бельгиец Лакруа, обратили внимание на чрезвычайное значение для токсикологии рентгеноструктурного анализа. Он сделал возможным простое и быстрое распознавание многих алкалоидных кристаллов и через них - самих алкалоидов. Американцы У. Барнз, Б. Марвин, Габарино и Шепард возглавили это направление и изучили характерные признаки, которые позволяли идентифицировать значительное число алкалоидов с помощью рентгеноструктурного анализа.
Но это было еще, пожалуй, не самое значительное достижение. Более важное открытие носит довольно странно звучащее название "колоночной" или "бумажной хроматографии". Англичанин А. С. Кэрри в первую очередь помог этому методу триумфально вступить в область токсикологии.
В 1906 г. русский ботаник Цвет занялся изучением водных растительных экстрактов, содержащих различные натуральные красители. Какой-нибудь из этих экстрактов он пропускал через наполненную измельченным мелом стеклянную трубку - "колонку". При этом мел втягивал в себя красящее вещество из экстракта. На верхнем конце меловой "колонки" возникал пестрый
[240]
слой, в котором были соединены все красящие вещества, в то время как с нижнего конца "колонки" стекал чистый водянистый раствор растительного экстракта. Но затем происходило нечто совсем удивительное. Когда русский ученый подливал сверху в "колонку"-трубку воду, то пестро окрашенная зона на верхнем конце ползла вниз. Но ползла она не как единое целое. Красящие вещества отделялись друг от друга и оставались "висеть", четко разделенные между собой, на различных уровнях меловой начинки. Если же вторично добавляли воду, они смещались вниз и вытекали порознь.
Цвет открыл тем самым метод разделения простым способом смеси различных веществ и разложения их на составные части. Этот метод разделения получил название "хроматографический анализ" - от греческих слов "хрома" ("цвет") и "графо" ("пишу" ). Открытие это находилось в забвении до тех пор, пока немецкий исследователь Рихард Кюн из Гейдельберга не открыл в начале 30-х годов этот метод заново. Оказалось, что самые различные химические вещества можно путем хроматографии разложить на составные части и что подобным же образом отдельные составные части можно идентифицировать. Если эти составные части бесцветны, то их местоположение в "колонке" можно распознать с помощью ультрафиолетовых лучей или реактивов, которые, как и при токсикологических анализах, ведут к образованию определенной окраски.
Наконец, оказалось, что "колонка" может быть заменена фильтровальной бумагой, на которой составные части исследуемых субстанций отделяются друг от друга аналогичным образом. Между 1950 и 1960 гг. новый способ взяла себе на вооружение и токсикология. Бумажная хроматография в области обнаружения алкалоидов стала, во всяком случае по признанию англичанина Кларка, "самым значительным событием со времен Стаса".
Когда бумажная хроматография укоренилась в токсикологии, охота за растительными алкалоидами и множеством их синтетических преемников имела уже более чем столетнюю историю. И эта охота представляла собой не рядовой акт в драме человеческих ошибок, усилий, триумфов, новых ошибок и новых триумфов, которым посвящена книга. Речь идет о решающем акте, который предопределил развитие всей судебной токсикологии. Тем не менее и он не последний.