Венец творения в интерьере мироздания
Шрифт:
Энтропия — это мера хаоса, дезорганизации. А организованная живая система всячески противостоит энтропийному давлению среды. Она борется за свою выделенность из среды, тратит на это энергию, которую черпает из той же среды, отнимая в конкурентной борьбе у других живых систем…
Так что правильнее говорить о живых системах — «устойчивое неравновесие» и «неустойчивое неравновесие». Неустойчивое неравновесие — это и есть точка бифуркации. Устойчивое неравновесие — обычный, «штатный» режим функционирования системы.
Глава 7.
Мышь, смотрящая на Вселенную
Как
Почему же мы кругом видим сплошное усложнение вместо разрушения и упрощения? Уж не Божий ли здесь промысел?… Такие вопросы часто задают наивные юные девушки мастодонтам отечественной философии, вроде меня. И я ничуть не тушуюсь, отвечаю со всей возможной прямотой: «Никакого промысла, девушки! Второе начало термодинамики звучит так: „Энтропия в закрытых системах не убывает". Закон, как видите, действует только для закрытых систем, то есть систем, которые не обмениваются энергией с окружающей средой. Но в мире не существует закрытых систем, они есть только в головах у физиков. Также как идеальный газ».
Процессы негэнтропии (усложнения) идут в открытых системах, которые обладают достаточным разнообразием и к которым Второе начало не имеет никакого отношения (точнее, не играет в них решающей роли). Если в разнообразную систему закачивать энергию, то под действием этой энергии в системе неизбежно начнутся процессы самоорганизации материи. Впервые на это обратил внимание в середине XX века бельгийский физик Илья Пригожий, который занимался неравновесной термодинамикой. Он и положил начало новой науке о процессах организации материи, идущих в открытых системах. Позже ее назвали синергетикой, хотя самому Пригожину это слово не очень нравилось.
По сути синергетика — наука об эволюции. Наука об усложнении материальных структур в открытых системах.
Практически все системы в нашем мире являются открытыми. Кроме, наверное, самой Вселенной. Но про нее мы можем только гадать — закрыта она или открыта. Позже точнее разберемся. А пока воспоем славу великому Пригожину, который окончательно захлопнул в эту Вселенную дверь для Бога.
Второе начало давно не давало покоя философам. Оно выступало видимым противоречием тому усложнению, которое мы наблюдаем вокруг себя: строятся дома, рождаются дети, идут созидательные процессы, все более и более выделяющие биоценозы и цивилизацию из среды. На каком таком основании? Ведь Второе начало требует только разрушения, дезорганизации. Пригожий объяснил, на каком. Он экспериментировал с достаточно простыми физическими системами и даже в довольно простых системах обнаруживал, что приток энергии меняет структуру системы. В ней начинают образовываться стабильные вихри, течения, которые «едят» поступающую энергию…
Но, несмотря на усложнение структур и кажущееся нарушение Второго начала, в целом Второе начало термодинамики, конечно же, не нарушается. Если принять Солнечную систему за систему закрытую, то есть пренебречь звездным излучением, как фактором несущественным, то мы увидим, что общая энтропия Солнечной системы растет. Процессы созидания на Земле оплачиваются разрушением Солнца. Солнце — практически единственный наш источник энергии (не считая тех крох, что мы в последние полвека научились добывать за счет распада трансурановых элементов, выковыренных нами из земли).
Созидание всегда оплачивается разрушением — это фундаментальное следствие фундаментального физического закона, имя которому — Второе начало термодинамики. Оглянитесь вокруг, и вы найдете тысячи примеров тому из жизни. Лев пожирает лань, строя свое тело на деструкции чужого тела. Человечество разрушает биоценозы, завоевывая себе жизненное пространство. Гусеница пожирает листок… А все вместе мы пожираем наше Солнце. Всего одна двухмиллиардная часть его энергии попадает на Землю, и этого хватает на все здешние процессы. Спасибочки…
Кстати, по поводу усложнения структур… Не могу не упомянуть классический опыт, который проделал в середине XX века Стенли Миллер, пытаясь подтвердить гипотезу Опарина. Ах да, вы же еще не знаете, кто такой Опарин…
В 1920-х годах русский биохимик Александр Опарин выдвинул теорию, что жизнь на Земле возникла в первобытном бульоне — морской воде, в которой плавает масса органических молекул. В присутствии метана (тогда считалось, что атмосфера молодой Земли состояла из метана), под воздействием постоянных грозовых разрядов органические молекулы вступали в реакции, образуя все более и более сложные молекулы, потом белки… Что и привело в конце концов к образованию жизни.
Миллер решил проверить эту гипотезу экспериментально, хотя бы на первом этапе. Он смешал в колбе метан, водород, аммиак, воду, стал подогревать и пропускать через смесь электрические разряды. Миллиона лет, как у эволюции, у него в запасе не было. Но столько и не понадобилось. Через несколько часов в колбе образовались аминокислоты. А аминокислоты, между прочим, — кирпичики жизни! Из них состоят белки.
Потом, когда выяснилось, что первичная атмосфера нашей планеты вовсе не состояла из метана, восторг вокруг опытов Миллера несколько поутих, хотя опыт этот до сих пор приводится в учебниках по биологии в качестве примера того, как зарождалась жизнь.
… А зря, кстати, поутихли восторги! По сути, радоваться нужно было бы еще больше «ошибке» Миллера! Да, состав, взятый Миллером, как теперь считается, не соответствовал реально существовавшему в то далекое время на Земле. Но ведь даже в неправильной атмосфере у Миллера все получилось! То есть: вы говорите, жизнь зародилась не в метановой атмосфере? Хорошо, но если вдруг захотите в метановой — будет вам и в метановой! Жизнь — штука упорная…
В общем, хотя опыт Миллера и не соответствовал раннеземным условиям, он является классическим экспериментом, подтверждающим эволюцию, то есть усложнение структур в разнообразной среде при насыщении системы энергией.
… Что-то мы отвлеклись от квантовой механики. А ведь из нее вытекает одно немаловажное следствие. И сформулировать его можно так: наблюдая за миром, мы меняем его.
Собственно, это ученые знали и раньше. Если вы включаете в электрическую сеть амперметр, чтобы узнать, какой в цепи ток, то стрелка будет показывать не ток в исследуемой цепи, а ток в исследуемой цепи с амперметром, поскольку амперметр, как всякий электроприбор, имеет свое сопротивление и, значит, меняет ток. Поэтому, чтобы минимизировать искажение, вносимое прибором, сопротивление амперметра стараются сделать как можно меньше. Амперметр, как все помнят, включают в цепь последовательно. А вот вольтметр включают параллельно, поэтому его электросопротивление для тех же целей, напротив, стараются сделать максимально большим, а лучше — бесконечным.