Веселые задачи. Две сотни головоломок
Шрифт:
Рис. 80. Как приготовить бумажную ленту к склеиванию.
Рис. 81. Как склеить бумажную ленту в кольцо.
Вы показываете эту заранее приготовленную ленту своим гостям и спрашиваете их:
— Что получится, если ленту разрезать вдоль посередине?
Но результат оказывается неожиданным. Как вы думаете, что получится?
85. Еще неожиданнее
Еще неожиданнее будет результат при разрезании другого бумажного кольца, склеенного несколько иным образом. А именно, конец закручивают, как и раньше, но не два раза, а один раз (3-й угол при склеивании придется против 2-го угла).
Что получится, если разрезать такую ленту вдоль посередине (рис. 82)?
Результат поразит вас!
Рис. 82. Кольцо, склеенное из бумажной ленты по-другому.
86. Игра в «32»
В эту игру играют вдвоем. Положите на стол 32 спички. Тот, кто начинает играть, берет себе одну, две, три или четыре спички. Затем и другой берет себе сколько хочет спичек, но тоже не более четырех. Потом опять первый берет не свыше четырех спичек. И так далее. Кто возьмет последнюю спичку, тот и выиграет.
Игра очень простая, как видите. Но она любопытна тем, что тот, кто начинает игру, всегда может выиграть, если только правильно рассчитает, сколько ему нужно брать.
Можете ли вы указать, как он должен играть, чтобы выиграть?
87. То же, но наоборот
Игру в «32» можно видоизменить: тот, кто берет последнюю спичку, не выигрывает, а, наоборот, проигрывает.
Как следует здесь и играть, чтобы наверняка выиграть?
88. Игра в «27»
Эта игра похожа на предыдущие. Она также ведется между двумя игроками и тоже состоит в том, что играющие поочередно берут не более 4 спичек. Но конец игры иной: выигравшим считается тот, у кого по окончании игры окажется четное число спичек. В этой игре начинающий ее имеет преимущество. Он может так рассчитать свои ходы, что наверняка выиграет.
В чем состоит секрет беспроигрышной игры?
89. На иной лад
При игре в «27» можно поставить и обратное условие: считается выигравшим тот, у кого после игры окажется нечетное число спичек.
Каков здесь способ беспроигрышной игры?
90. Из шести спичек
Можете ли вы из шести спичек составить четыре равносторонних треугольника, притом так, чтобы ни одна сторона ни одного треугольника не была короче спички?
Попытайтесь. И не отчаивайтесь в успехе, если вам сразу не удастся решить задачу, она все-таки разрешима и даже без особых хитростей.
Не бойтесь также и подвоха в условии задачи; ее надо понимать именно так, как сказано: составить из 6 спичек 4 равносторонних
Решения задач 81-90
81. Удваивая или утраивая четное число, вы всегда получаете в результате четное число. Другое дело с числом нечетным: при удвоении оно становится четным, но при утроении остается нечетным. Гривенник, следовательно, дает четное число и при удвоении, и при утроении; напротив, 3 копейки дают четное только при удвоении; утроенные они дают число нечетное. Мы знаем также, что, складывая четное число с четным, получим четное, а складывая четное и нечетное, получим нечетное число.
Отсюда прямо вытекает, что если в нашем фокусе сумма оказалась четной, значит, три копейки были удвоены, а не утроены, т. е. находились в правой руке.
Если бы сумма была нечетной, это означало бы, что три копейки подверглись утроению и, следовательно, находились в левой руке.
82. Секрет фокуса кроется в том, что второй гость, приписывая к задуманному трехзначному числу то же число, умножил его, сам того не подозревая, на 1001. Действительно, если, например, первый гость задумал число
873,
то у второго гостя получилось число
873873.
Но ведь это не что иное, как
873000 + 873, т. е. 873 x 1001.
А число 1001 — замечательное число: оно получается от умножения 7,11 и 13. Не удивительно поэтому, что хозяин уверенно предлагал делить такое шестизначное число сначала на 13, потом на 11 и на 7. Делить же последовательно на 13,11 и на 7 все равно, что делить на 13 x 11 x 7, т. е. на 1001. Итак, второй гость умножил задуманное число на 1001, а три следующих гостя совместно разделили полученное им число на 1001. Вот почему в результате снова получилось задуманное число.
83. Этот курьезный фокус, в сущности, прост до смешного. Его разгадка ясна, например, уже из того, что если на последний вопрос вам ответит не туз, а валет, успех отгадывания будет не менее блестящим. Вообще, весь секрет фокуса вот в чем: сообразно с тем, что вам нужно, вы сосредоточиваете внимание собеседника либо на тех картах, которые им названы, либо же на тех, которые не названы. А так как задуманная карта непременно должна оказаться либо среди названных, либо среди не названных, то нисколько не удивительно, что собеседник ваш всегда «отгадывает» безошибочно.
Разумеется, когда вы проделаете этот фокус несколько раз подряд, уловка будет раскрыта. Но если не злоупотреблять недогадливостью партнера, то можно поставить в тупик самого находчивого человека.
84. Получаются два кольца, но продетые одно в другое, как звенья цепи (рис. 83). Если каждое из этих колец вы снова разрежете вдоль, то опять получите два кольца, продетые одно в другое.
Рис. 83. Кольцо, разрезанное вдоль средней линии.
85. При разрезании этого кольца вдоль получится, вопреки всем ожиданиям, не два кольца, а… одно, вдвое большее (рис. 84).