Чтение онлайн

на главную

Жанры

Шрифт:

Весной или зимой 1948 года я прочитал в «Nature» работу Франка. Автор обсуждал исторические эксперименты Пауэлла, Латтэса и Окиалини, в которых был открыт пи-мезон. Экспериментаторы применили тогда новую методику облучения в космических лучах фотопластинок с толстым слоем фотоэмульсии и нашли интересные треки распада какой-то остановившейся в эмульсии частицы, более легкой, чем протон, причем при распаде образовывался, несомненно, мю-мезон. Пауэлл, Латтэс и Окиалини сделали вывод, что это более тяжелая частица, чем мю-мезон, – иначе она не могла бы распадаться с выделением довольно заметной энергии. Впоследствии частица получила название пи-мезон. Ввиду фундаментального характера вывода о существовании нового типа частиц было необходимо проанализировать все альтернативные возможности объяснения, среди них Франк разбирал и такую: первичная частица – обычный мю-мезон. Она захватывается ядром водорода, образуя подобие атома (теперь говорят – «мезоатом»). Затем мезоатом соединяется с еще одним ядром водорода, образуя «молекулярный мезоион». Если одно из ядер водорода является тяжелым изотопом (дейтоном, природное содержание 1/7000), то в «мезоионе» возможна ядерная реакция дейтона с протоном с образованием гелия-три и гамма-кванта. При этом избыток энергии сообщается мю-мезону, и он вылетает, образуя трек. Интересующая нас ядерная реакция происходит между двумя заряженными частицами – дейтоном и протоном. Обычно такие реакции происходят с заметной вероятностью только в том случае, если энергия сталкивающихся частиц достаточно велика, чтобы преодолеть электростатическое («кулоновское») отталкивание положительно заряженных ядер («одноименно заряженные тела отталкиваются» выучили мы из школьного курса, в памяти сразу встают разошедшиеся листочки электроскопа). Одна из возможностей – термоядерная реакция (вот и произнесено слово, столь существенное в судьбе автора этой книги). При этом ядерная реакция происходит при такой температуре, когда энергия теплового движения достаточна для преодоления отталкивания ядер. В случае изотопов водорода (H – протон, D – дейтон, T – тритон) это – температура порядка нескольких килоэлектронвольт (Кэв) и больше, для многозарядных ядер всех остальных элементов – «порог» во много раз выше (поэтому, в частности, в термоядерном оружии используются только термоядерные реакции между изотопами водорода). 1 Кэв – один килоэлектронвольт – принятая в астрофизике и в теории ядерного оружия единица температуры – соответствует примерно 10 млн. градусов Кельвина. Температура в центре солнца приблизительно 1,5 Кэв, т. е. пятнадцать миллионов градусов.

При лабораторных исследованиях ядерных реакций заряженных ядер одна из сталкивающихся частиц ускоряется электрическим полем, вторая помещается в так называемой мишени (твердой или газообразной). Это – вторая возможность осуществления ядерной реакции между заряженными ядрами. Франк указал третью возможность. Молекулярный мезоион, состоящий из протона, дейтона и отрицательно заряженного мю-мезона, по своему строению аналогичен обычному молекулярному иону (протон + дейтон + электрон). Отрицательно заряженный мю-мезон или электрон скрепляют воедино систему трех тел, притягивая положительно заряженные ядра. Но так как мю-мезон имеет массу в 209 раз больше массы электрона, то размеры мезоиона в такое же число раз меньше (это соотношение подобия можно получить, приравнивая по порядку величины энергию электростатического взаимодействия и энергию нулевых квантовых колебаний). Большая часть пути ядер, на котором им приходится преодолевать взаимное отталкивание, оказывается таким образом уже пройденной; остаток пути легко преодолевается благодаря явлению квантового подбарьерного перехода. Подбарьерный переход – один из самых важных качественных эффектов в квантовой физике – был теоретически открыт и изучен Робертом Оппенгеймером в конце 20-х годов; он, в частности, лежит в основе альфа-распада, многих явлений твердого тела, спонтанного деления ядер урана и т. д.

Идея Франка была необычайно остроумной. Но оценки, произведенные им, показывали, что так ни в коем случае нельзя объяснить результаты опытов Пауэлла, Латтэса и Окиалини. Первичная частица – не мю-мезон, а нечто новое – пи-мезон. Меня, однако, работа Франка заинтересовала совсем с другой стороны. В предложенном Франком механизме мю-мезон выступает в качестве катализатора ядерных реакций, облегчая их протекание и не расходуясь, в полной аналогии с известными из химии каталитическими реакциями. Я поставил перед собой вопрос, нельзя ли создать такие условия, при которых каждый мю-мезон (скажем, «сделанный» на ускорителе) вовлекал бы в ядерную реакцию большое число дейтонов. Попросту говоря, что будет, если в большой сосуд с дейтерием впустить пучок мю-мезонов? Я придумал название для этого предприятия – «Мю-мезонный катализ», произвел некоторые оценки – не очень обнадеживающие и далеко не исчерпывающие сложные явления, происходящие в системе, и написал отчет. Отчет был засекречен (первый засекреченный в моей жизни, кажется по инициативе Вавилова), но с работой было ознакомлено довольно большое количество людей в ФИАНе и за его пределами. Она вызвала большой интерес, но какие-либо практические выводы сделаны не были. Расскажу о дальнейшем развитии этой тематики (в котором я принимал лишь очень слабое участие). В 1956 году замечательный американский экспериментатор Алварез, используя пучок мю-мезонов от ускорителя, обнаружил на опыте предсказанную Франком реакцию. Алварез наблюдал эту реакцию в смесях, содержащих разные, довольно малые количества дейтерия. Оказалось однако, что образующийся сначала протонный мезоатом с неожиданно большой вероятностью реагирует с дейтерием, дейтон «переманивает» к себе мю-мезон, образуется мезоатом из дейтона и мю-мезона. Реакция «переманивания» идет с выделением энергии, так как энергия связи мю-мезона с тяжелым дейтоном несколько больше энергии связи с протоном. Я обсуждал этот эксперимент с Я. Б. Зельдовичем, у него было много ценных идей, я со своей стороны дал грубую оценку эффекта переманивания, в результате появилась наша совместная работа; в ней была также ссылка на мой рассекреченный к тому времени отчет39).

При вычислении выхода каталитической реакции на один мю-мезон надо учитывать следующие факторы: мю-мезон – нестабильная частица, он распадается за относительно очень короткое время в две миллионных секунды. Образование молекулярного иона и последующая ядерная реакция протекают не мгновенно, а за конечное время. Имеет место отравление катализатора – термин из обычной химии, в данном случае это образование мезоиона с ядром гелия. Очевидно, если мы ожидаем заметного выхода ядерной реакции, время образования молекулярного иона и время ядерной реакции должны быть много меньше времени жизни мю-мезона, а отравление должно происходить достаточно редко.

Все эти факторы тщательно анализировались. Среди тех, кто вел эти исследования в СССР – С. Герштейн, Л. Пономарев и их сотрудники. Основной вывод:

1. В чистом дейтерии нет оснований надеяться на такой выход реакции, при котором можно было бы вернуть энергию, затраченную на производство мю-мезонов.

2. В смеси дейтерия с тритием ситуация более обнадеживающая.

(Добавление 1987 г. Существуют теоретические оценки и предварительные экспериментальные результаты, дающие возможность надеяться, что в принципе не исключено, что мю-мезонный катализ явится одним из решений проблемы термоядерного синтеза (в «бридерном» варианте, о котором я рассказываю ниже в связи с магнитно-термоядерным методом решения проблемы). Реакция должна осуществляться не в жидкой фазе, как я думал в 1948 году, а в большом объеме сжатого газа.)

Экспериментальный мю-мезонный катализ в СССР изучался В. П. Джелеповым с сотрудниками (в качестве источника мю-мезонов использовался фазотрон в Дубне). В целом мю-мезонный катализ – большая область исследований, в которой занято немало людей.

В начале 1948 года сотрудник ФИАНа оптик проф. С. Л. Мандельштам (сын Л. И. Мандельштама) попросил меня произвести расчеты каких-то неравновесных процессов в плазме газового разряда, деталей я не помню. Я выполнил эти расчеты (потом они были даже опубликованы40)). Эта работа явилась поводом для поездки в Киев на спектроскопическую конференцию, что было очень приятно. Первый в жизни полет на самолете, прекрасный город с интереснейшей архитектурой и историей, какое-то отключение от всего того, что осталось в Москве. Я ходил на некоторые заседания конференции, больше из общего любопытства, чем по деловым причинам. На конференции произошла острая стычка между ее участниками – отголосок происходивших тогда дискуссий по поводу «идеалистической квантовой химии». Критики квантовой химии утверждали, в частности, что идеалистическим является используемое в этой науке представление о суперпозиции орбит – на самом деле, если отвлечься от некоторых применявшихся тогда упрощений и «химического» языка, это было просто перенесение в химию общепризнанного в физике фундаментального квантовомеханического принципа суперпозиции состояний. Интересно, что критики идеи суперпозиции могли сказать по поводу молекулы бензола, обладающей шестерной осью симметрии, между тем как в структурной формуле – ось симметрии третьего порядка. И помнят ли сейчас об этих дискуссиях коллеги наших химиков на Западе? К счастью, в химии и, как я уже писал, в физике лженаучные атаки были не так сильны и успешны, как в биологии.

Я жил в гостинице «Украина» на углу Крещатика, по утрам под окнами пели соловьи. Моим соседом по номеру оказался Борис Самойлов (тот самый, который в 30-х годах работал на обсерватории Планетария, а потом его вместе со мной в 1942 году принимали за еврея ашхабадские мальчишки). Самойлов в это время работал в Институте физических проблем и приехал (в отличие от меня, для которого спектроскопия была лишь побочным эпизодом) с очень интересной экспериментальной работой. Борис был все таким же шумным, непоседливым, веселым, он очень развлекал меня тогда. В дальнейшем мы не встречались, я знаю, что он стал хорошим экспериментатором, добившимся известности среди оптиков. Недавно он умер.

Получилось так, что эта поездка в Киев явилась для меня «глотком свободы», последней интермедией перед двадцатью годами секретности. Вновь я попал в Киев уже с Люсей в декабре 1971 года и январе 1972 года, при совсем других обстоятельствах, в совсем другой жизни.

Глава 6

Атомное и термоядерное. Группа Тамма в ФИАНе

Об открытии явления деления ядер урана я впервые узнал еще до войны, кажется в 1940 году, от папы. Он был на каком-то докладе, не помню чьем, и рассказал мне услышанное. Через некоторое время я прочитал на ту же тему обзорную популярную статью в «Успехах физических наук» (папа выписывал этот журнал). К своему стыду, я не вполне оценил тогда важность открытия деления, хотя и в папином рассказе, и в обзорной статье упоминалась принципиальная возможность цепной реакции – кажется, без четкого разграничения управляемой цепной реакции (которая осуществляется теперь в ядерных реакторах) и взрывной цепной реакции (которая происходит при взрыве атомного оружия). В настоящее время физические процессы, существенные при управляемой реакции, подробно описаны в открытой литературе, кое-что (с рядом недомолвок и умышленных неточностей) опубликовано и о физике ядерного взрыва. В обоих случаях происходит цепная реакция. Сущность ее сводится к тому, что при захвате одного нейтрона ядром делящегося изотопа (смысл термина напоминаю ниже) оно «делится» на два «осколка» сравнимой массы, при этом выделяется энергия и образуются два или три новых нейтрона, которые могут в свою очередь вызвать новые акты деления. Особенность цепной реакции в том, что она вызывается электрически-нейтральными частицами – нейтронами, которые не отталкиваются от атомных ядер. Поэтому реакция деления может происходить при сколь угодно низкой температуре (например, при комнатной), что отличает ее от термоядерной реакции. Наибольшее значение имеют цепные реакции, происходящие в редком изотопе урана (в уране-235) и в плутонии-239. Напомню, что атомные ядра состоят из электрически заряженных протонов и нейтральных нейтронов. Число протонов в ядре, равное числу электронов в атомной оболочке, полностью определяет химические свойства атома (а также размеры атома, его оптические свойства и т. п.). Ядра с одним и тем же числом протонов и разным числом нейтронов принадлежат одному и тому же химическому элементу, это различные «изотопы» этого элемента, при этом от числа нейтронов зависит атомный вес – точнее, массовое число – и свойства в отношении ядерных реакций. Так, в природном уране содержится 99,3% ядер изотопа уран-238 (92 протона и 146 нейтронов в ядре) и 0,7% ядер изотопа уран-235 (92 протона и 143 нейтрона). Массовое число в обоих случаях есть сумма числа протонов и нейтронов (238 = 92 + 146, 235 = 92 + 143). При малой энергии нейтронов (меньше 1 Мэв) реакция деления происходит лишь в уране-235 и плутонии-239, поэтому эти изотопы называются кратко «делящимися». При больших энергиях первичных нейтронов делятся и ядра урана-238. Такие «быстрые» нейтроны не образуются при процессе деления, поэтому в уране-238 цепная реакция не поддерживается (однако возможна «вынужденная» реакция деления, если быстрые нейтроны поставляются каким-то источником, например термоядерной реакцией; энергия нейтронов, образующихся в реакции D + D, равна 2,5 Мэв, образующихся в реакции D + T равна 14 Мэв41)). В природной смеси изотопов цепная реакция оказалась возможной в специальных условиях, создаваемых в ядерных реакторах. Реакция эта – управляемая, управление реакцией крайне облегчается тем, что часть нейтронов образуется при акте деления не мгновенно, а с некоторым запаздыванием. В 1939–1940 гг. даже из того, что я выше написал, многое еще не было известно. Последняя (и очень важная) довоенная публикация, в которой обсуждается возможность управляемой и (отчасти) взрывной цепной реакции, – статья Я. Б. Зельдовича и Ю. Б. Харитона. В это время за рубежом все публикации уже прекратились.

Как известно, исследования продолжались – и очень энергично – в секретном порядке. Что касается меня, то до 1945 года я просто забыл, что существует такая проблема. Лишь в феврале 1945 года я прочитал в ФИАНовской библиотеке в журнале «Британский союзник» (который издавался английским посольством в Москве для советских читателей) о героической операции английских и норвежских «коммандос» (впоследствии Черчилль назвал эту операцию подвигом исторического значения). Они уничтожили в Норвегии завод и запасы тяжелой воды, предназначенной немцами для производства «атомной бомбы» – взрывного устройства фантастической силы, использующего явление деления ядер урана. Это, по-моему, было первое упоминание об атомной бомбе в печати. История и истинная цель этой удивительной публикации мне неизвестны. Несомненно, это было «просачивание» секретной информации; я думаю, что намеренное. Может, с целью какого-то воздействия на немецкие программы, кто его знает. Как пишут в книгах о разведке, центры психологической войны всех государств вели тогда очень сложную и не всегда понятную простым смертным игру.

Я сразу вспомнил тогда все, что мне было известно о делении и цепной реакции. В эти же месяцы я слышал время от времени обрывки разговоров (не придавая им особого значения) о какой-то лаборатории 2 («двойка»), которая якобы стала «центром физики». Речь шла, как я узнал потом, о большом научно-исследовательском институте под руководством И. В. Курчатова для работ в области атомной энергии.

Атомная проблема опять ушла из моего поля зрения, заслоненная интенсивным изучением всего широкого мира теоретической физики. В мае – незабываемое событие – Победа над фашизмом, окончание войны в Европе (хотя на востоке война продолжалась).

Популярные книги

Кодекс Охотника. Книга XXIII

Винокуров Юрий
23. Кодекс Охотника
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Кодекс Охотника. Книга XXIII

Кодекс Охотника. Книга XXIV

Винокуров Юрий
24. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XXIV

Муж на сдачу

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Муж на сдачу

Особняк Ведьмы. Том 1

Дорничев Дмитрий
1. Особняк
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Особняк Ведьмы. Том 1

Идеальный мир для Лекаря 4

Сапфир Олег
4. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 4

Власть силы-1

Зыков Виталий Валерьевич
5. Дорога домой
Фантастика:
фэнтези
8.11
рейтинг книги
Власть силы-1

Сердце Дракона. Предпоследний том. Часть 1

Клеванский Кирилл Сергеевич
Сердце дракона
Фантастика:
фэнтези
5.00
рейтинг книги
Сердце Дракона. Предпоследний том. Часть 1

Смертник из рода Валевских. Книга 1

Маханенко Василий Михайлович
1. Смертник из рода Валевских
Фантастика:
фэнтези
рпг
аниме
5.40
рейтинг книги
Смертник из рода Валевских. Книга 1

Не грози Дубровскому! Том V

Панарин Антон
5. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том V

Сахар на дне

Малиновская Маша
2. Со стеклом
Любовные романы:
современные любовные романы
эро литература
7.64
рейтинг книги
Сахар на дне

Огненный князь

Машуков Тимур
1. Багряный восход
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Огненный князь

Не грози Дубровскому! Том IX

Панарин Антон
9. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том IX

Сфирот

Прокофьев Роман Юрьевич
8. Стеллар
Фантастика:
боевая фантастика
рпг
6.92
рейтинг книги
Сфирот

Если твой босс... монстр!

Райская Ольга
Любовные романы:
любовно-фантастические романы
5.50
рейтинг книги
Если твой босс... монстр!