Возможны ли измерения в теории относительности? Конечно, нет!
Шрифт:
1. Введение
Начало разговору об измерениях в теории относительности было положено здесь [1]. Поэтому данная работа является продолжением обсуждения этой важной темы. Далее в работе [2] я показал, что измерить длину движущегося стержня по методу, предложенному Эйнштейном, невозможно. И что такая попытка приводит лишь к порочному кругу, то есть; чтобы измерить длину движущегося стержня, надо сначала знать, какова эта самая длина. Здесь же показано, что попытка измерить промежуток времени (по Эйнштейну) движущимися часами также приводит к порочному кругу. Далее в работе [3] я показал, что релятивистский подход к науке приводит к ненаучной логике познания: если A больше B, то и B больше A. Но такая логика исключает возможность каких-либо измерений. Таким образом, основы теории относительности всякий раз упираются в вопрос: «Каким образом релятивист собирается что-либо измерять, и возможно ли такое измерение»? Процедура измерения есть эксперимент, а результат измерения есть опытный
Поскольку начинать разговор мне придется с измерений в геометрии и математике, то я должен предупредить вас, что в этой работе речь идет о классической геометрии и математике. Геометрия здесь – евклидова. Математика – традиционная. В ней используются знаки и операции: больше, меньше, равно, плюс, минус, умножить, поделить, и. д. Таким образом, это – не теория множеств и не топология, где таких знаков нет.
Поясню также, почему приходится начинать с измерений в геометрии. Дело в том, что в современной физике геометрия, математика, и собственно физика, настолько взаимосвязаны, что вопрос о том, какая из них главнее при изучении законов природы становится чисто риторическим. А вот вопрос о том, с чего общего начинаются все эти три науки, действительно весьма важен. И с чего же одного общего они начинаются? Они начинаются с двух экспериментальных фактов: 1-й – построения геометра; 2-й – измерения геометра.
Замечания об обозначениях. Книга предназначена и для электронного и для бумажного варианта. Самые важные места я буду выделять курсивом. Далее, простейшие формулы я буду печатать в строку, используя для этого подходящие символы. Например, запись a/b будет означать – a деленное на b. Чтобы избежать печати верхних и нижних индексов, я буду широко использовать скобки, так запись t(3) будет означать – время, отсчитанное часами в точке номер 3. А запись СО(2) будет означать – система отсчета номер 2. Скорость точки всегда буду обозначать прописной (а не строчной) буквой V. Запись V(1) будет означать – скорость в точке пространства номер 1.
2. Понятие измерения
Мы настолько часто пользуемся словом «измерение», что от такого частого его употребления также часто забываем и о его настоящем понимании. И в результате этого понятие измерения превращается просто в слово – измерение. Поэтому мне придется сейчас вместе с вами кое- что вспомнить именно о понятии измерения.
Необходимость в понятии измерения появилась у геометров (разумеется, древних геометров). И эта необходимость появилась после того, как геометр сначала научился строить геометрические фигуры. Геометр первый сообразил, что измерить это значит узнать, во сколько (или на сколько) длина одного отрезка отличается от длины другого отрезка. Или во сколько (или на сколько) один угол отличается от другого угла. А для такого узнавания (то есть измерения) надо обязательно иметь возможность прикладывать один отрезок (эталонный и абсолютный) к другому отрезку, измеряемому. И обязательно иметь возможность прикладывать один угол (эталонный и абсолютный) к другому углу, измеряемому. А это в свою очередь означает, что при перемещении (движении), построенные уже эталонные фигуры, обязаны быть неизменными.
Сейчас я изложу, предположительно, как рассуждал бы древний геометр, когда пришел к выводу, что абсолютные (эталонные) отрезки обязательно необходимо иметь, раз мы заговорили об измерении. Пусть имеются два равных отрезка (отрезок – 1 равен отрезку – 2). Но вот в результате каких-то обстоятельств затем оказалось, что отрезок – 1 стал короче отрезка -2. Как узнать, что произошло с ними на самом деле? Здесь имеются пять вариантов развития событий.
1-й вариант. 1-й отрезок стал короче; 2-й отрезок не изменился.
2-й вариант. 1-й отрезок не изменился; 2-й отрезок стал длиннее.
3-й вариант. 1-й отрезок стал короче; 2-й отрезок стал длиннее.
4-й вариант. Оба отрезка укоротились, но 1-й отрезок укоротился больше, чем 2-й
5-й вариант. Оба отрезка стали длиннее, но 2-й отрезок удлинился больше, чем 1-й.
Нет никакой возможности узнать, что произошло с отрезками на самом деле. Это можно узнать, если только заранее… «Что если только заранее…»? Если только заранее у нас имеется аксиома: «Обязательно существует отрезок, длина которого не меняется ни при каких обстоятельствах. Этот отрезок абсолютен, и он может быть принят за единицу измерения, а измерения после этого будут возможны, однозначны и непротиворечивы». Точно такая же аксиома у геометра появится и по отношению к углам. После того как эталонный отрезок или угол будут построены геометром, то они уже не имеют права меняться ни при каких обстоятельствах. То же самое будет иметь силу и для других фигур, также уже построенных геометром. Иначе ни о каких измерениях речи быть не может! А теперь вопрос, что означает «ни при каких обстоятельствах»? А это в том числе означает и то, что фигуры, будучи построенные геометром, не меняются и тогда когда они двигаются относительно чего-либо. К вопросу неизменности фигур при движении я ещё вернусь, когда буду обсуждать относительность движения. Но внимательный читатель уже сейчас понимает важность «аксиом неизменности фигур». У релятивистов длина движущегося отрезка зависит от скорости, а это противоречит только что высказанной аксиоме, превращая понятие измерения в бессмыслицу.
Итак, восстанавливая приблизительную схему рассуждений древнего геометра про возможность измерений, мы убеждаемся в том, что он вполне корректно (по-научному) применил принцип относительности в решении этого вопроса. И хотя он, наверно, и не пользовался словами «абсолютное и относительное», он все-таки интуитивно понимал, что эти «сущности» в правильных, логичных рассуждениях всегда присутствуют вместе. Выражаясь современным языком, древний геометр понимал, что абсолютное и относительное – парные понятия, и каждое по отдельности, одно без другого есть бессмыслица. А что же тогда мешает нам, современным, достаточно образованным людям понимать это и сейчас, в наше время? А мешает такому пониманию появление релятивистов. Они появились, заявили, что «все относительно», предложили нам откровенно псевдонаучную «теорию относительности», под видом научной теории. Говоря простым языком, многих из нас им удалось «сбить с толку». Эта книга как раз и посвящена объяснению того, как релятивистам удается «сбивать нас с толку».
3. О субъективной относительности в процедуре измерений
Итак, релятивист появился. И он говорит: «Вот вы говорите, что единицы измерения у всех геометров обязаны быть одинаковы и абсолютны. Однако каждый геометр может (то есть в праве) выбрать свою единицу. И результаты измерения длины отрезка у всех геометров будут получаться разными, а значит и относительными. Вот видите, все относительно». И про измерение угла релятивист скажет то же самое.
Однако когда геометр вправе выбирать свои единицы по своему усмотрению? Когда он говорит о субъективной науке (только для себя), или когда он говорит об объективной науке (науке для всех)? Он вправе это делать, если только он собирается создавать субъективную, а не объективную науку. В самом деле. Пусть, например, соберется вместе десяток геометров, и у каждого свои (субъективные) единицы измерения длин и углов. Спорам о том, чему равно расстояние между двумя точками A и B, или чему равен угол между прямыми AB и AC, не будет конца. А между тем, и расстояние между точками, и угол между прямыми ничуть не изменятся, сколько бы геометры не спорили. Этим спорам положит конец геометр, который скажет: «Мы создаем объективную (одинаковую для всех) науку. У нас отрезок AB и угол BAC одинаковы (объективны) для всех. У нас величина этого отрезка и величина этого угла одинаковы для всех. А почему тогда результаты измерения этих величин у нас различны? Потому, что они субъективны. И мы сделаем эти результаты также объективными. Мы введем объективные (одинаковые для всех) единицы измерения длин и углов. Эти единицы теперь будут абсолютными. И они будут подчиняться аксиоме неизменности фигур». После этого все другие единицы измерения тотчас перейдут в разряд относительных единиц. Коэффициенты пересчета относительных единиц к абсолютным единицам заносятся в таблицу единиц измерения. И эти коэффициенты теперь уже становятся объективными, они не зависят от мнения какого-либо субъекта.
Итак, субъективная относительность, которую пытается нам «впарить» релятивист в качестве основного закона природы, тотчас же исчезает, как только речь заходит об объективной науке. В объективной науке остается лишь объективная относительность, например, такая, как в утверждении: «Часть отрезка всегда меньше самого отрезка». Легко видеть, что в своих рассуждениях релятивист манипулирует понятиями «могут быть» и «должны быть». Он все время говорит о том, какими могут быть единицы измерения. Всякому дураку понятно, какими «могут быть» единицы измерения. Однако мы создаем объективную науку, и, более того, собираемся что-то измерять (объективно, однозначно, непротиворечиво). А это значит, что говорить-то надо о том, какими должны быть единицы измерения в объективной науке. «Могут быть» и «должны быть» – это далеко не одно и то же. К сожалению, субъективная относительность в сознании современных умов удерживает прочные позиции. Совсем недавно на одном физическом интернет-форуме я встретил утверждение: «Перешел на точку зрения другого наблюдателя, перелинуй метрику». Самое печальное тут в том, что большинство физиков ничего не имеют против этого утверждения. А ведь оно насквозь пропитано субъективной относительностью. С какой стати я должен перелиновывать метрику, если она у меня и так является общей для всех и абсолютной? Это другой наблюдатель, если он по недомыслию использовал другую метрику, обязан пересчитать её к общей для всех и абсолютной. Итак, у релятивиста хватает ума понять, что измерения могут проводится при помощи индивидуальных (субъективных) единиц измерения. Но у него не хватает ума понять, что этого недостаточно для построения объективной науки. Необходимо ещё пересчитать эти измерения к измерениям с помощью единых для всех, то есть абсолютных единиц измерения. Но релятивист отрицает существование таких абсолютных единиц. А на деле это есть отрицание объективной науки, и попытка заменить её субъективной наукой. Замечу, что релятивист всегда излагает дело так, как будто он и не думал заменять объективную науку на субъективную. Но, как говорится «шила в мешке не утаишь». И теперь уже не важно, думал или не думал, а важно, что так оно и есть. В следующем пункте мы увидим, как релятивист протаскивает субъективную относительность туда, где мы начинаем говорить о понятии движения.
4. Движение, геометрия, измерение, субъективная относительность
Поскольку мы начинаем говорить о движении, то во всех последующих рассуждениях существование абсолютно неподвижной системы координат считается само собой разумеющимся. И хотя её существование или отсутствие не скажется на ходе рассуждений (до некоторых пор), я оговариваю это, чтобы не было недомолвок. О существовании или отсутствии абсолютно неподвижной системы координат речь подробно пойдет, когда мы начнем говорить об измерении перемещения точки.