Чтение онлайн

на главную

Жанры

Шрифт:

Писатель имел в виду концентрацию в пространстве обычных световых волн, испускаемых горячим источником. Но из таких лучей, как показал профессор Г. Г. Слюсарев, принципиально невозможно создать пучок, способный произвести существенное разрушающее действие: пучок обязательно будет размазан в пространстве. Это качественное обстоятельство. Есть и количественное.

Простой расчет показывает, что для того чтобы обычным лучом света (как у Толстого) проколоть такую же пластинку, какую пробивает мазер, температура источника должна быть доведена до 10 миллиардов градусов. А ведь это в полтора миллиона раз горячее Солнца!

Какое же бессчетное количество солнц должно

быть сконцентрировано в «гиперболоиде», чтобы, собрав их лучи, разрез'aть настоящие корабли!

Как выясняется, создавать высокие плотности лучистой энергии в пространстве можно, только не средствами макрооптики, как в романе А. Н. Толстого, а средствами микрооптики, в возможности которой так верил С. И. Вавилов.

Если к мазеру подходить как к мирному орудию, здесь ясно вырисовываются заманчивые перспективы. Самые невероятные на первый взгляд идеи перестают казаться несбыточными, как только выясняется, что для их реализации можно применить устройства квантовой радиофизики.

Вот примеры.

В 1958 году американцам удалось принять отраженный сигнал радиолокатора, посланный к Венере на волне длиной 3 сантиметра. Немного времени спустя такой опыт и еще успешнее — с более мощным сигналом — был проведен советскими учеными.

Чтобы ясно представить себе значение этого события, надо вспомнить одно соотношение. Оно гласит, что плотность энергии отраженного луча, принимаемого локатором, убывает по сравнению с плотностью энергии первоначального луча пропорционально четвертой степени расстояния от цели. Шофер, читающий письмо при отраженном от стены свете фар своей машины, вряд ли разглядит хотя бы букву, если отъедет от стены вдвое дальше, чем вначале: в кабине станет в 16 раз темнее.

Применив это соотношение для вычисления мощности луча, вернувшегося на Землю после отражения от Венеры, получим потрясающе малую величину. По подсчетам зарубежных авторов, относящимся к американскому опыту, отраженный от Венеры космический радиосигнал попал в приемное устройство, имея мощность всего лишь в одну миллиардную часть миллиардной доли одной миллиардной ватта (в числах это выражается единицей, деленной на единицу с двадцатью семью нулями).

И тем не менее сигнал был принят! Его усилил, сделал явственным квантовый усилитель, работающий в радиодиапазоне.

Позднее с помощью аналогичного усилителя успешно принимались сигналы с космических ракет, удалившихся от Земли на многие миллионы километров.

Наряду с мазерами, радиоволновыми генераторами и усилителями все активнее включаются в человеческую жизнь, становятся надежными помощниками специалистов и оптические квантовые генераторы и усилители — лазеры.

Очень скоро выяснились их мирные возможности. Например, во Франции они нашли применение в глазной хирургии для прижигания кровоизлияний в сетчатой оболочке глаза. Такая операция длится всего несколько микросекунд вместо одной без малого секунды, как раньше. Прежний срок являлся слишком большим, так как при этом нагревались и соседние, здоровые части сетчатки.

В оптических генераторах длины используемых электромагнитных волн сократились с сантиметров до десятитысячных долей миллиметра, и «радиосигнал», предназначенный для усиления, засветился: он перешел из радиодиапазона в область видимого света.

Со времен Максвелла любой старшеклассник знает, что знаменитая череда различных излучений — сейчас сюда относятся гамма-излучение, рентгеновское, ультрафиолетовое, световое, инфракрасное и радио — различается лишь частотами колебаний, или длинами волн. Природа же их одинакова — это электромагнитные волны. Казалось

бы, чего проще, изменяя конструкцию радиопередатчиков, постепенно уменьшать длины волн и привести их в область видимых радиосигналов? Однако ничего не получалось. Добрых полстолетия никакими ухищрениями никому не удавалось создать радиостанцию, работающую на волнах порядка 430–700 миллимикронов — в диапазоне, доступном человеческому глазу. Самая короткая волна, полученная при помощи электромагнитного генератора, была чуть меньше миллиметра, то есть миллиона миллимикронов.

А между тем природа щедро обеспечила ученых сверхкоротковолновыми радиогенераторами. Таковы атомы, точнее, атомы светящихся веществ. По размерам и по мощности они миниатюрны. Зато в смысле простоты конструкции это идеальные радиостанции: число деталей в них сведено до недостижимого в технике минимума — единицы, в крайнем случае, десятки.

Чтобы понять, как посылает свои электромагнитные импульсы такое миниатюрное устройство, надо вспомнить картину энергообмена в атоме, нарисованную еще в начале века Максом Планком и Нильсом Бором. Чем-то эта картина напоминает, образно говоря, стрельбу из пистолета.

Чтобы атом отдал энергию — «выстрелил», его надо вначале «зарядить»: ввести в него энергию со стороны. Если пистолет стреляет только целыми и обладающими одинаковой энергией пулями, то примерно так же «стреляет» и атом. Атом испускает и поглощает электромагнитную энергию не непрерывно, а скачкообразно, очень маленькими порциями, — квантами, или фотонами. Каждая из этих порций совершенно точно отмерена и соответствует определенной частоте колебаний, или длине волны.

Процесс энергообмена в атоме протекает так. Начнем с момента, когда атом «не заряжен», пребывает, как говорят физики, в невозбужденном, основном состоянии. Такой атом не может испускать энергию — он может ее лишь поглощать. Положим, что это и произошло: в атом попал извне квант вполне определенной величины (как правило, атом поглощает лишь один квант, причем соответствующий строго определенной частоте колебаний). Поглотив этот квант, атом в тот же миг скачкообразно переходит в возбужденное состояние. «Пистолет» заряжен. Как же происходит «выстрел»? Оказывается, есть два способа отдачи энергии возбужденным атомом, сопровождающихся переходом его в основное (или в некоторое промежуточное) состояние: спонтанно, то есть самопроизвольно, без вмешательства извне, и вынужденно, под влиянием облучения. В обоих случаях из атома вылетает запасенный им ранее, при возбуждении, квант энергии, но второй способ, как показал еще открывший его Альберт Эйнштейн, эффективнее.

Замечательно, что квант, испущенный атомом в результате вынужденного излучения, ничем не отличается от тех квантов, которые вызвали его излучение. Существенно — позже мы узнаем почему, — что эти кванты совершенно одинаковы: имеют одинаковую частоту, поляризацию и направление распространения. Излученный таким образом квант органически входит в вызвавший его излучение поток и усиливает его.

Второй способ часто называют индуцированным излучением. Открыт он был давно — в 1917 году, однако долго оставался предметом чистой теории. Никому не приходило в голову, что от него может быть какой-нибудь прок. Неожиданно явление индуцированного излучения оказалось дверью в новую область прикладной физики: оно легло в основу действия квантовых генераторов.

Поделиться:
Популярные книги

Игра топа. Революция

Вяч Павел
3. Игра топа
Фантастика:
фэнтези
7.45
рейтинг книги
Игра топа. Революция

Кровь на эполетах

Дроздов Анатолий Федорович
3. Штуцер и тесак
Фантастика:
альтернативная история
7.60
рейтинг книги
Кровь на эполетах

Темный Охотник

Розальев Андрей
1. КО: Темный охотник
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Темный Охотник

Измена. Мой заклятый дракон

Марлин Юлия
Любовные романы:
любовно-фантастические романы
7.50
рейтинг книги
Измена. Мой заклятый дракон

Император поневоле

Распопов Дмитрий Викторович
6. Фараон
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Император поневоле

Восход. Солнцев. Книга V

Скабер Артемий
5. Голос Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Восход. Солнцев. Книга V

Пограничная река. (Тетралогия)

Каменистый Артем
Пограничная река
Фантастика:
фэнтези
боевая фантастика
9.13
рейтинг книги
Пограничная река. (Тетралогия)

Гром над Империей. Часть 2

Машуков Тимур
6. Гром над миром
Фантастика:
фэнтези
попаданцы
5.25
рейтинг книги
Гром над Империей. Часть 2

Идеальный мир для Лекаря 7

Сапфир Олег
7. Лекарь
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 7

Адепт. Том второй. Каникулы

Бубела Олег Николаевич
7. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.05
рейтинг книги
Адепт. Том второй. Каникулы

Здравствуй, 1985-й

Иванов Дмитрий
2. Девяностые
Фантастика:
альтернативная история
5.25
рейтинг книги
Здравствуй, 1985-й

Вечный. Книга V

Рокотов Алексей
5. Вечный
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга V

Внешники такие разные

Кожевников Павел
Вселенная S-T-I-K-S
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Внешники такие разные

Возвышение Меркурия. Книга 8

Кронос Александр
8. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 8