Чтение онлайн

на главную

Жанры

Вселенная! Курс выживания среди черных дыр. временных парадоксов, квантовой неопределенности
Шрифт:

Однако у электронов и нейтрино явно есть нечто общее. Если в результате реакции появляется нейтрино, можете смело ставить последний доллар за то, что в этом замешан электрон. Поэтому, вероятно, эти частицы в чем-то симметричны, только симметрия очень слабая. Гипотеза заключается в том, что существует слабое поле, а на самом деле целых три, которое способно превратить электрон в нейтрино и наоборот, или превратить u– кварк в d– кварк, или позволить нейтрино разбегаться друг от друга. Маленькие «кусочки» этого поля можно засечь детектором – это частицы W и Z.

Мы могли бы проделать примерно такие же или

гораздо более сложные логические выкладки и выявить качества глюонов, носителей сильного взаимодействия, или гипотетического гравитона, носителя гравитации. Но мы этого делать не будем. Нас (как и исследователей, работающих на БАК) интересует разгадка тайны слабого взаимодействия. Формулы слабого взаимодействия, которые получаются, когда мы проделываем вычисления, основанные на симметрии, оказываются почти идеально точными – как и в случае с электромагнетизмом.

Почти.

В главе 1 мы видели другую форму симметрии. Тогда мы ее так не называли, но отметили, что вся физика Вселенной имеет одинаковый смысл, когда вы стоите неподвижно или двигаетесь равномерно и прямолинейно. Кроме того, мы видели, что скорость частиц, очевидно, менялась в зависимости от того, двигаетесь вы или сохраняете неподвижность. С одним исключением: частицы, лишенные массы, всегда двигаются со скоростью света.

Очевидно, в частицах, лишенных массы, есть что-то особенное, и из этого должно следовать, согласно нашим симметрическим аргументам, что все частицы-переносчики должны быть лишены массы. Фотоны и глюоны именно таковы. Хотя мы так и не получили гравитон, тот факт, что гравитация распространяется со скоростью света, означает, что гравитоны должны быть тоже лишены массы.

С другой стороны, частицы W и Z обладают массой, и еще какой [73] . Они примерно в 100 раз массивнее протона. С точки зрения математики нужно здорово повозиться с формулами, чтобы с этим разобраться.

V. Почему я не могу сбросить вес (или массу) до нуля?

Насколько мы понимаем, аргументы, основанные на симметрии, о которых мы говорили выше, и в самом деле описывают фундаментальные уравнения Вселенной. Частицы действительно способны превращаться друг в друга. Если эта догадка верна, то мы могли бы предсказать каждую из фундаментальных сил, существование электронов и нейтрино, различные разновидности кварков и так далее.

73

Если уж они ленятся, так ленятся, и с дивана их не поднять.

Но мы этого не можем. Главная проблема – это масса, она словно борец сумо на тренажере «Кузнечик». Массы должны быть лишены не только частицы W и Z. Если бы мы начинали с нуля, создавая самую простую из возможных моделей Вселенной, мы бы предположили, что кварки, электроны и нейтрино тоже должны быть лишены массы. А у них масса есть.

Большинство популярных книг по физике говорит о концепциях наподобие «спонтанного нарушения симметрии» и других технических терминах, цель которых – описать массу через реальные частицы. А на самом деле эти концепции – не более чем условное описание, при помощи которого описывается математика, которая (гм!) отлаживает уравнения, чтобы они предсказывали именно то, что мы наблюдаем на самом деле.

Так далеко мы заходить не хотим. В этом нет ничего нечестного. Более того, это и есть физика высшего сорта. Вы придумываете теорию, Вселенная не соответствует вашим предсказаниям, поэтому вы придумываете новый инструмент, чтобы подправить математику. Например, кварки поначалу были придуманы как математическое допущение, а потом оказалось, что они и вправду существуют.

Было

бы глупо описывать математику, которая требуется, чтобы обойти препятствия, с которыми мы до сих пор столкнулись. Было бы отнюдь не глупо, если бы мы подвели итог. В 1960-х годах Питер Хиггс из Эдинбургского университета предположил, что во Вселенной существует еще одно поле – кроме тех полей, о которых мы уже успели поговорить. Назвали его весьма свежо и оригинально – «поле Хиггса». Поле Хиггса имеет одно радикальное отличие от всех тех полей, о которых мы упоминали: оно не несет силы.

Поле Хиггса пронизывает всю Вселенную. Вы в нем так и купаетесь. Но почему же мы его не замечаем, если оно нас окружает? Что оно делает, это поле Хиггса? Попробуем объяснить предельно просто: представьте себе, что это поле – что-то вроде густого меда. Положите кварк в большое ведро, полное поля Хиггса, и подтолкните его. Что будет? Толкать кварк, взаимодействующий с полем Хиггса, труднее, чем вы думали. С физической точки зрения чем труднее что-то двигать, тем оно массивнее. То есть поле Хиггса «придает» частицам массу.

Мы бы не хотели слишком долго развивать эту аналогию. Если бы поле Хиггса действительно было похоже на густой мед, то частица, придя в движение, начинала бы потом тормозиться. А этого явно не происходит. И все же в основном картина состоит в том, что, подобно тому как электромагнитное поле создает взаимодействие, которое двигает заряженные частицы, поле Хиггса создает взаимодействие, которое придает частице массу.

Все это кажется чистой воды умствованием, верно?

Но дело отнюдь не в том, что нервный физик хватается за соломинку. Мы уже упоминали гипотезу о том, что разнообразные силы во Вселенной – всего лишь разные аспекты одной-единственной силы. Например, когда-то считалось, что электричество и магнетизм – совершенно разные явления, пока в 1865 году Джеймс Клерк Максвелл не показал, что это просто разные аспекты одного и того же электромагнитного взаимодействия.

С тех самых пор физики пытаются показать, что оставшиеся четыре силы – это на самом деле три, две или в идеальном случае одна. Что же это означает? Ведь фундаментальные силы и в самом деле кажутся очень разными. Сегодня так и есть, однако, как выясняется, все зависит от того, достаточно ли Вселенная разогрета.

В 1961 году Шелдон Глэшоу, Стивен Вайнберг и Абдус Салам показали, что электромагнетизм и слабое взаимодействие – это одно и то же. На первый взгляд это смелое заявление. Различия между электромагнетизмом и слабым взаимодействием бросаются в глаза. Частица-переносчик у электромагнетизма не имеет массы, а слабые взаимодействия происходят через частицы W и Z, которые очень и очень тяжелы. В результате электромагнитные взаимодействия могут распространяться на большие расстояния, а слабые взаимодействия – только на очень близкие.

В общем, сами видите: пока что получается, что это разные силы. Странно. Как же объединить два настолько различных явления? Глэшоу, Вайнберг и Салам рассмотрели то, как эти силы выглядели на заре Вселенной, при высокой температуре и энергии. И оказалось, что полная теория электрослабых взаимодействий требует четыре частицы-переносчика, которые взаимодействуют с примерно одинаковой силой.

Однако по мере того, как Вселенная остывала, поле Хиггса (которое существовало все это время и никуда не девалось) начало уставать. И когда оно (метафорически) вышло на пенсию, то начало принимать горячее участие в делах соседей. Три из электрослабых частиц (обе W и Z) начали взаимодействовать с полем Хиггса и получили массу, а фотон так и остался без массы. Теперь, поскольку поведение частиц W и Z стало так разительно отличаться от поведения фотона, мы вынуждены дать взаимодействию новое название – слабое взаимодействие. Вроде бы получилась славная история с хорошим концом – если бы не одна малость.

Поделиться:
Популярные книги

Не грози Дубровскому! Том VIII

Панарин Антон
8. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том VIII

Para bellum

Ланцов Михаил Алексеевич
4. Фрунзе
Фантастика:
попаданцы
альтернативная история
6.60
рейтинг книги
Para bellum

Архонт

Прокофьев Роман Юрьевич
5. Стеллар
Фантастика:
боевая фантастика
рпг
7.80
рейтинг книги
Архонт

Сильнейший ученик. Том 2

Ткачев Андрей Юрьевич
2. Пробуждение крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сильнейший ученик. Том 2

Измена. Ребёнок от бывшего мужа

Стар Дана
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Ребёнок от бывшего мужа

Real-Rpg. Город гоблинов

Жгулёв Пётр Николаевич
1. Real-Rpg
Фантастика:
фэнтези
7.81
рейтинг книги
Real-Rpg. Город гоблинов

Хозяйка Междуречья

Алеева Елена
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Хозяйка Междуречья

Крестоносец

Ланцов Михаил Алексеевич
7. Помещик
Фантастика:
героическая фантастика
попаданцы
альтернативная история
5.00
рейтинг книги
Крестоносец

Эйгор. В потёмках

Кронос Александр
1. Эйгор
Фантастика:
боевая фантастика
7.00
рейтинг книги
Эйгор. В потёмках

Идеальный мир для Лекаря 3

Сапфир Олег
3. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 3

Кодекс Крови. Книга III

Борзых М.
3. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга III

Вернуть невесту. Ловушка для попаданки 2

Ардова Алиса
2. Вернуть невесту
Любовные романы:
любовно-фантастические романы
7.88
рейтинг книги
Вернуть невесту. Ловушка для попаданки 2

Черный Маг Императора 7 (CИ)

Герда Александр
7. Черный маг императора
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Черный Маг Императора 7 (CИ)

Удобная жена

Волкова Виктория Борисовна
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Удобная жена