Вселенная. Руководство по эксплуатации
Шрифт:
Нейтральность — это удел не только Швейцарии и атомов. Сколько бы материн ни создавалось во Вселенной, протонов и электронов в ней всегда поровну, поэтому Вселенная, в целом электрически нейтральна — и всегда была такой. Нет ни одного эксперимента« в котором не сохранялся бы заряд,— неважно, где его проделывают, на Земле или в космосе. Это приводит к первому основному закону для всех фундаментальных сил: электрический заряд це создается и не уничтожается.
Как можно ожидать, действие в нашей универсальной игре не сводится к тому, чтобы перетаскивать протоны и электроны с места на место, все время сохраняя заряд. Посмотрим, к примеру, на нейтрон. Нейтрон — это что-то вроде пациента в коридоре у кабинета врача: прождав минут десять, нейтрон взрывается. Разница в том, что вместо того, чтобы накричать
Самая крупная из этих частиц — протон. Возможно, вас это удивит, поскольку мы говорили вам, что электрический заряд сохраняется, нр задумайтесь вот над чем: в этом нет ничего страшного, если найдется другая частица с отрицательным зарядом, чтобы уравновесить положительный заряд протона. Что-то вроде электрона. Точнее, сам электрон.
В результате нейтронного распада образуется кое- что еще, но мы хотим сделать два предупреждения: 1) как бы ни казалось на первый взгляд, нейтрон не состоит из протона, электрона и кое-чего еще,— он в них превращается; 2) кстати, протоны и нейтроны кое из чего состоят, просто мы еще не Сказали из чего.
Скоро мы поговорим и о других фундаментальных частицах, но боимся, как бы вы еще раньше не заблудились в «зоопарке частиц». Мы не собираем-
ся заставлять вас зубрить большой каталог фундаментальных частиц по той простой причине, что их (по меньшей мере) 18, не считая диких разновидностей одной и той же частицы, которые на самом деле с фундаментальной точки зрения не отличаются друг от друга. Из предупредительности к вам, читатель, мы поместили в конце главы удобное приложение, где перечислен весь «зоопарк» с указанием всего, что вам имеет смысл знать о каждой частице. Не за что, не за что, не стоит благодарности.
Теперь вы знаете о том, из чего состоит материя, примерно столько же, сколько знал каждый лет сто назад, но мы собираемся копнуть чуть глубже, чтобы разобраться* что происходит на самых глубоких уровнях. Вот почему мы собираемся выбить из этих частиц все, что можно,— а для этого нам нужен БАК. Мы надеемся, что протоны — это такие свиньи- копилки или иностранные шпионы: если стукнуть их посильнее, получится кое-что интересненькое [56].
Кольцо коллайдера — это гоночная трасса для протонов, и два протонных луча будут лететь навстречу друг другу со скоростью, близкой к скорости света. Как мы видели в главе 1, чтобы заставить частицы двигаться настолько быстро, нужна прорва энергии. Опустим вычисления — скажем только, что энергии, необходимой, чтобы разогнать два протона до такой скорости, чтобы они распались, хватит, и на то, чтобы по закону Е = тс [57]создать 14 тысяч протонов с нуля. Когда два протона сталкиваются, происходит много разных событий, но все они подчиняются второму из наших основных законов: энергия не создается и не уничтожается.
Зато ее можно конвертировать из движения в массу, и именно это мы и собираемся делать в коллайдерах частиц.
Если столкнуть друг с другом энергичные протоны, получатся частицы, куда более массивные, чем исходные. Но если частицы, которые создаются в ускорителях, так массивны, зачем вообще нужны ускорители? Наверное, великанские частицы легко заметить и так?
И да и нет. Конечно, если бы в пространстве там и сям плавали массивные частицы, их можно было бы собирать и исследовать безо всякого труда. Беда в том, что все во Вселенной стремится сбросить энергию до минимально возможной. Положите на стол мяч для боулинга — в этой позиции у него будет довольно много энергии — и легонечко подтолкните его. Он упадет со стола к вам на ногу — где энергии у него будет гораздо меньше. Поскольку энергия и масса эквивалентны, это означает, что массивная частица распадется, если это вообще возможно, на менее массивную и еще что-нибудь — и очень скоро, в чем мы убедились, когда говорили о радиоактивности в главе 3.
Самые массивные частицы живут всего миллионную долю секунды или даже меньше, а потом распадаются на более легкие, и так будет продолжаться предположительно 13,7 миллиарда лет — с начала времен и до тех пор, когда все массивные частицы
По Вселенной так и шныряют высокоэнергичные заряженные частицы. Протоны на высоких скоростях испускает и Солнце, и другие звезды в разных частях галактики, и сверхновые, — все места, где есть высокоэнергичные источники. Эти заряженные частицы, которые называются космическими лучами, летают туда-сюда, пока на что-нибудь не наткнутся. Если бы не магнитное поле, окружающее нашу планету, этим «чем-нибудь» могли бы быть ваши клетки — и тогда космические лучи убили бы вас или стерилизовали. Вот почему нужно слушаться мамочку и не проводить в открытом космосе слишком много времени. Достаточно часто космические лучи попадают в атмосферу и сталкиваются с кислородом или азотом, превращаясь в процессе в более массивные частицы. Стратосфера и все, что выше, кишат, словно нечищеные зубы, всякой дрянью — мюонами, каонами и пионами.
Эти частицы рождаются и умирают в мгновение ока [58], поэтому создать их и измерить молено только и исключительно внутри ускорителя. Если мы столкнем частицы друг с другом при достаточно высокой энергии, а затем сошлемся на закон Е = vc 2 [59]: вуаля! Массивные частицы у нас в кармане. Если мы будем получать их в ускорителях, то нам будет проще предсказывать, когда они появляются, а значит, легче и изучать их.
Однако пионы и мюоны — не единственные массивные частицы, которые страдают от дегенеративных тенденций. Как мы уже упоминали, распаду подвержен даже нейтрон (эта черта отличает его от протона) . Если вы дадите нейтрону около 10 минут, он распадется на протон, электрон (а значит, сохранится общий заряд) и еще одну частицу, о которой мы вам раньше не говорили, — она называется антинейтрино.
Только не пугайтесь — мы сейчас вам все объясним, и про «анти», и про «нейтрино». Начнем с «нейтрино». Это название выбрано потому, что нейтрино
электрически нейтральны, а прямо их не увидеть. Откуда же мы узнали, что они есть, если они, в сущности, невидимы? Хороший вопрос.
В 1930 году Вольфганг Паули предложил новаторскую интерпретацию экспериментов с распадом нейтрона. Было замечено, что когда нейтрон распадается, протон и электрон часто отлетают в одном и том же направлении. Интерпретацию распада нейтрона но Паули, как и многие явления в жизни, легче представить себе, если привлечь к делу супергероев.
Представьте себе, как Сью Шторм, она же Невидимая Леди, и ее муж мистер Фантастик 1катаются на коньках по замерзшему пруду. Они отталкиваются друг от друга, и мистер Фантастик стремительно отъезжает в одну сторону, а Сью, как всегда невидимая, — в другую. С берега за ними наблюдает Существо, которое видит только мистера Фантастика, который мчится задом наперед, — с его точки зрения, безо всякой причины. Но Существо довольно быстро понимает, что к чему. Он уверен, что на льду есть еще кто-то — кто-то невидимый — и что этот второй сейчас мчится в противоположном направлении.
1«Фантастическая четверка» черпает свою сверхчеловеческую силу в космических лучах, а значит, этот пример вдвойне уместен.
Паули, сыгравший роль Существа, заключил, что должна существовать невидимая частица-призрак, электрически нейтральная: антинейтрино.
Нейтрино (а следовательно, и антинейтрино) очень легкие, и довольно долго считалось, что они полностью лишены массы. Однако в 1998 году на японском нейтринном детекторе «Супер-Камиоканде» был проведен эксперимент, показавший, что у нейтрино на самом деле есть некоторая масса. Это выдающееся достижение, но следует также отметить, что пока что ученые еще не вычислили массу нейтрино. К этому вопросу мы еще вернемся в главе 9, а пока вправе уверенно сказать, что масса нейтрино во много раз меньше массы электрона.