Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform
Шрифт:
Структура, в которой каждый элемент содержит указатель и длину. Обычно применяются не одиночные векторы ввода/ вывода, а массивы векторов — такой массив структур из указателей и длин определяет список фрагментов сообщения для операции фрагментации/дефрагментации (scatter/gather), позволяющей выполнять обмен сообщениями намного эффективнее (в противном случае, чтобы сформировать один непрерывный буфер, данные пришлось бы копировать по отдельности).
Аварийная
Система виртуальной памяти — это система, в которой виртуальное адресное пространство может, но не обязательно, быть преобразовано на основе взаимно-однозначного соответствия с физическим адресным пространством. Типовым примером этого (на момент написания книги в QNX/Neutrino это не поддерживается) является система «со страничной организацией памяти», где в случае недостатка ОЗУ некоторые фрагменты адресного пространства процессов могут быть выгружены на диск. Что QNX/Neutrino действительно поддерживает, так это динамическое распределение стековых страниц.
Адрес, которому не обязательно соответствует физический адрес. В QNX/Neutrino все потоки работают в режиме виртуальной адресации, когда виртуальные адреса транслируются в физические при помощи диспетчера памяти. Сравните с понятиями «физический адрес» и «виртуальная память».
Выравнивание — характеристика операции, при которой доступ к N-байтовому элементу данных должен выполняться только по адресу, кратному N. Например, чтобы обратиться к 4-байтовому целому числу, адрес этого целого числа должен быть кратным 4 байтам (например, 0x2304B008, а не 0x2304B009). В архитектуре некоторых процессоров (CPU) при попытке невыровненного доступа генерируется ошибка выравнивания (alignment fault). В архитектуре других процессоров (например, x86) невыровненный доступ осуществляется медленнее, чем выровненный доступ.
Аппаратный блок (обычно интегрированный с центральным процессором), который обеспечивает трансляцию виртуальных адресов в физические и может использоваться для реализации системы виртуальной памяти. В QNX/Neutrino главным преимуществом применения диспетчер памяти является возможность обнаружить момент, когда поток обращается к виртуальному адресу, который не отображен в адресное пространство соответствующего процесса.
При диспетчеризации FIFO (First In — First Out) поток будет использовать процессор до тех пор,
Когда сервер принимает сообщение от клиента, функции сервера MsgReceive или MsgReceivev возвращают идентификатор отправителя (часто сокращенно в программах называемый «rcvid»). Этот идентификатор rcvid затем используется по отношению к заблокированному клиенту как дескриптор, позволяя серверу отправить клиенту ответ с данными, там самым разблокировав его. После использования rcvid для ответа клиенту, он перестает иметь значение для всех вызовов функций, кроме функции MsgDeliverEvent.
Дескриптор, возвращаемый функцией ConnectAttach (на клиентской стороне) и используемый для всех операций обмена данными между клиентом и сервером. Идентификатор соединения аналогичен дескриптору файла в терминах стандартной библиотеки языка Си — иными словами, когда функция open в QNX/Neutrino возвращает дескриптор файла, реально возвращается идентификатор соединения.
Принятая в QNX/Neutrino концепция, в силу которой отправляемые сообщения передаются в одном направлении, а ответы на сообщения — в другом. Основной целью реализации иерархического принципа обмена является необходимость исключения состояния взаимной блокировки потоков. Иерархический принцип реализуется назначением клиентам и серверам «уровней иерархии» и обеспечения того, чтобы сообщения передавались только на более высокий уровень иерархии. Это исключает ситуации взаимной блокировки, когда два потока посылают сообщения друг другу, потому что такая ситуация нарушила бы принцип — поток не должен отправлять сообщения другому, если тот находится на нижнем уровне иерархии.
Неблокирующее сообщение, получаемое аналогично обычному сообщению. Это сообщение является неблокирующим для отправителя; получатель же может ожидать его применением стандартных функций обмена сообщениями (MsgReceive и MsgReceivev) или же, если необходимо ждать именно импульса, то при помощи функции MsgReceivePulse. В то время как большинство сообщений обычно посылаются от клиента к серверу, импульсы обычно пересылаются в противоположном направлении, чтобы не нарушать иерархический принцип обмена (это вызвало бы взаимную блокировку). Сравните с сигналом.