Взрывающиеся солнца. Тайны сверхновых
Шрифт:
В следующий и более долгий период времени, например в 1/10 000 долю секунды, Вселенная была уже настолько велика и остыла, что кварки могли соединяться по три и образовывать такие субатомные частицы, как протоны и нейтроны. Затем, после еще более длительного интервала, в несколько тысяч лет, Вселенная остыла достаточно для того, чтобы протоны и нейтроны начали соединяться между собой, образуя атомные ядра, а готовые ядра стали притягивать электроны, формируя целые атомы. [2] По прошествии еще более долгого периода времени, по крайней мере в 100 млн. лет, начали образовываться звезды и галактики
2
Время образования первых ядер гелия, дейтерия с момента начала Большого взрыва составляет ~100 с. — Примеч. ред.
В 70-х годах был выдвинут вариант концепции Большого взрыва; он получил название «расширяющейся Вселенной». Согласно ему, первоначальное расширение произошло почти молниеносно, а это во многих отношениях меняет детали эволюции Вселенной, открывая ее совсем в ином свете.
Проблемой, возникающей отсюда, является то, что Вселенная сложилась почти исключительно из нормального вещества, состоящего из протонов, нейтронов и электронов. Представляется, что последние не могли бы образоваться без одновременного образования их противоположностей: антипротонов, антинейтронов и антиэлектронов.
Названная группа должна была бы начать соединяться образуя антивещество, и, казалось бы, Вселенная должна состоять из равных количеств вещества и антивещества. Однако, насколько можно судить, это не так: повсюду почти одно вещество. (И это хорошо: если бы Вселенная состояла из равных количеств вещества и антивещества, то, как только они бы возникли, они бы тотчас же стали соединяться, взаимно уничтожая (аннигилируя) друг друга, оставив после себя лишь радиацию.)
Были разработаны теории, получившие название «теории великого объединения», имеющие темой поведение вещества в условиях очень высоких температур в первые мгновения после Большого взрыва. По этим теориям выходит, что при образовании вещества имеется едва заметная асимметрия. Обычное вещество образуется с перевесом в одну миллиардную часть над антивеществом. Когда вещество и антивещество встречаются и взаимно уничтожают друг друга, эта миллионная часть вещества остается, и из нее-то и образовались галактики Вселенной.
Другая большая проблема, остающаяся в связи с Большим взрывом, — это «комковатость» Вселенной. Большой взрыв, по-видимому, должен был быть шарообразно симметричным, т. е. он должен был расширяться одинаково во всех направлениях. В этом случае Вселенная должна была бы состоять из равномерно рассеянной массы атомов, в виде однородного газа. Что заставило этот газ собраться в комки, образовав звезды и галактики?
Идея раздувающейся Вселенной как будто дает объяснение этой комковатости, и, видимо, придет время, когда все трудности концепции естественного создания останутся позади.
ГЛАВА 7
ЭЛЕМЕНТЫ
СОСТАВ ВСЕЛЕННОЙ
Несомненно, что в ранний период после Большого взрыва крошечная, очень горячая Вселенная расширялась и охлаждалась до тех пор, пока протоны и нейтроны не получили возможности соединяться друг с другом, образуя атомные ядра. Какие же ядра получались и в какой пропорции? Это очень интересная проблема для космогоников (ученых, занимающихся происхождением Вселенной), — проблема, которая в конечном счете вернет нас
Атомные ядра имеют некоторое число разновидностей. Чтобы разобраться в этих разновидностях, их классифицируют в зависимости от числа протонов, имеющихся в этих ядрах. Это число колеблется от 1 до 100 и выше.
Каждый протон имеет электрический заряд +1. Другими частицами, присутствующими в ядрах, являются нейтроны, которые не имеют электрического заряда. Поэтому общий электрический заряд атомного ядра равен числу содержащихся в нем протонов. Ядро, содержащее один протон, имеет заряд +1, ядро с двумя протонами имеет заряд +2, ядро с пятнадцатью протонами имеет заряд +15 и т. д. Число протонов в данном ядре (или число, выражающее электрический заряд ядра) называется атомным числом.
Вселенная остывает все больше, и каждое ядро уже в состоянии уловить какое-то количество электронов. Каждый электрон имеет электрический заряд —1, и, поскольку противоположные заряды притягиваются, отрицательно заряженный электрон стремится остаться вблизи положительно заряженного ядра. В обычных условиях число электронов, которые могут удерживаться отдельным ядром, равно числу протонов в этом ядре. Когда число протонов в ядре равно числу окружающих его электронов, суммарный электрический заряд ядра и электронов равен нулю, а их сочетание дает нейтральный атом. Число протонов или электронов соответствует атомному числу.
Вещество, состоящее из атомов с одним и тем же атомным числом, называется элементом. Например, водород — элемент, состоящий из атомов, ядра которых содержат один протон и один электрон вблизи него. Такой атом называется «атомом водорода», а ядро такого атома — «ядром водорода». Таким образом, атомное число водорода равно 1. Гелий состоит из атомов гелия, содержащих ядра с двумя протонами, отсюда атомное число гелия равно 2. Аналогично литий имеет атомное число 3, бериллий — 4, бор — 5, углерод — 6, азот — 7, кислород — 8 и т. д.
С помощью химического анализа атмосферы Земли, океана и почвы установлено, что существует 81 устойчивый элемент, т. е. 81 элемент, которые не претерпят никаких изменений в естественных условиях неопределенно долго.
Наименее сложный атом на Земле (из фактически существующих) — это атом водорода. Рост атомного числа приведет нас к самому сложному устойчивому атому на Земле. Это атом висмута, имеющий атомное число 83, т. е. каждое ядро висмута заключает в себе 83 протона.
Так как всего имеется 81 устойчивый элемент, то в списке атомных чисел два числа должны быть пропущены, и это так: атомы, имеющие 43 протона и 61 протон, неустойчивы, элементов с атомными числами 43 и 61, подвергшихся химическому анализу, в естественных материалах нет.
Это, однако, не значит, что элементы с атомными числами 43 и 61 или с числом более 83 не могут существовать временно. Эти атомы нестабильны, поэтому рано или поздно, в один или несколько приемов они распадутся на атомы, которые останутся устойчивыми. Это не обязательно случается мгновенно, но может потребовать долгого времени. Торию (атомное число 90) и урану (атомное число 92) требуются миллиарды лет атомного распада, чтобы прийти к устойчивым атомам свинца (атомное число 82).
В сущности, за все долгие миллиарды лет существования Земли только часть тория и урана, изначально присутствовавших в ее структуре, успела распасться. Около 80 % первоначального тория и 50 % урана избежали распада и сегодня еще могут находиться в породах земной поверхности.