Чтение онлайн

на главную - закладки

Жанры

WTF? Гид по бизнес-моделям будущего
Шрифт:
Использование коллективного разума

Еще одним отличием веб-приложений, которые пережили крах «пузыря» доткомов, было то, что все, кто остался в живых, так или иначе работали над использованием коллективного разума своих пользователей. Google – это накопитель сотен миллионов веб-сайтов, созданных людьми во всем мире, и он использует скрытые сигналы от своих пользователей и от людей, которые создают эти сайты, для их ранжирования и организации. Компания Amazon не только объединяет товары всемирной сети поставщиков, но и позволяет своим клиентам сопровождать пояснениями ее базу данных товаров при помощи обзоров и рейтингов, то есть использует коллективный разум для определения лучших товаров.

Изначально я разглядел

эту модель, наблюдая, как Интернет стремительно ускорил глобальное сотрудничество вокруг проектов с открытым исходным кодом. И по мере того как будущее в очередной раз прокладывало себе дорогу, эта схема становилась все более рабочей. IPhone решительно захватил господствующее положение на заре мобильной эры, не только благодаря сенсорному интерфейсу и элегантному инновационному дизайну, но и благодаря тому, что App Store позволил всемирному сообществу разработчиков добавлять функции в виде приложений. Социальные медиаплатформы, такие как YouTube, Facebook, Twitter, Instagram и Snapchat, захватили свою власть за счет сбора материалов от миллиардов пользователей.

Когда люди спрашивали меня, что будет после Web 2.0, мне не приходилось долго думать над ответом «коллективные интеллектуальные приложения, работающие на данных, поступающих скорее от сенсоров, чем от людей, печатающих на клавиатуре». Определенно, все успехи в области распознавания речи и образов, в определении обстановки на дорогах в режиме реального времени, в области беспилотных автомобилей, зависят от огромного количества данных, собираемых с датчиков на подключенных устройствах.

Текущая гонка автономных транспортных средств – это гонка не только в сфере разработки новых алгоритмов, но и в сфере сбора все больших объемов данных от водителей об обстановке на дорогах и все большей детализации карт мира, создаваемых миллионами невольных участников. Многие уже забыли, что в 2007 году Стэнфорд выиграл соревнования автомобилей-роботов DARPA Grand Challenge, пройдя семимильный маршрут за семь часов. А уже к 2011 году компания Google располагала информацией об обычных автомагистралях общей протяженностью более чем в миллион миль. Их «секретное оружие» – обычные автомобили, снимающие панорамы улиц Google Street View, управляемые водителями-людьми, использующими камеры, GPS и LIDAR (Light Identification Detection and Ranging – обнаружение, идентификация и определение дальности с помощью света) для сбора данных. Как однажды мне сказал директор исследовательской компании Google Питер Норвиг: «Для ИИ это сложная проблема, идентифицировать светофор на видеоизображении. Гораздо проще сказать, зеленый он или красный, когда вы уже знаете, что он там находится». (Годы спустя после этого высказывания Питера первая задача стала для ИИ легче, но идею вы поняли.)

Сегодня такие компании, как Tesla и Uber, претендуют на лидерство в сфере беспилотных автомобилей, потому как обладают большим парком автотранспортных средств – автомобилями, датчики которых используются не только для выполнения поставленной задачи, но и для формирования вклада в алгоритмические системы будущего. Но запомните: эти машины управляются людьми. Обработка данных, которые они фиксируют, станет следующим этапом в использовании коллективного разума миллиардов людей, оснащенных привычными инструментами.

Данные – это intel inside следующего поколения

Тезис о вкладе пользовательских данных в коллективный интеллект звучит как песня кумбая [4] . И в первые годы нового века многие люди, прославлявшие сайты, созданные пользователями, такие как Wikipedia или новые сетевые средства массовой информации, такие как блоги, считали идею утопической. Я доказывал, что эти данные окажутся ключом к обретению ведущего положения на рынке для таких компаний, как Google и Amazon. Как я заметил в то время в одном разговоре: «Использование коллективного разума» – это то, чем начинается революция Web 2.0; «Данные – это Intel Inside» – то, чем она заканчивается».

4

Песня в жанре спиричуэлс, впервые записана в 1920-е годы. (Прим. ред.)

Intel была той компанией, которая вместе с Microsoft захватила монопольное положение на рынке персональных компьютеров, вследствие чего на каждом ПК красовалась наклейка INTEL INSIDE. Компания Intel добилась этого, став единственным поставщиком процессоров, мозга ПК. Microsoft добилась этого, контролируя доступ к своей операционной системе.

Программное обеспечение с открытым исходным кодом и открытые сетевые протоколы передачи данных изменили правила игры для Microsoft и Intel. Но моя карта сказала мне, что игра на этом не заканчивается. В соответствии с Законом сохранения привлекательной прибыльности Клейтона Кристенсена я знал: станет ценным что-то еще. Те самые данные. В частности, я считал, что накопление критической массы данных, предоставляемых пользователями, привело к самоусиливающимся сетевым эффектам.

Термин «сетевой эффект», как правило, относится к системам, которые приносят тем больше пользы, чем больше людей ими пользуются. Телефон сам по себе не особенно полезен, но, как только он появляется у достаточного количества людей, очень сложно не присоединиться к сети. Таким образом, конкуренция социальных сетей заключалась в привлечении как можно большей базы пользователей, поскольку захват цели осуществляется не через программное обеспечение, а через количество других людей, пользующихся одной и той же услугой.

Сетевые эффекты, которые я наблюдал относительно пользовательских данных, носили в большей степени косвенный характер и были обусловлены тем, каким образом компании учатся получать выгоду от пользователей своих систем. У Barnes & Noble были все те же продукты, что и у Amazon, но у Amazon было намного больше отзывов и комментариев пользователей. Люди заходили в эту сеть не только ради продуктов, но и ради информации, добавленной другими пользователями. Кроме того, в дополнение к превосходным алгоритмам Google и постоянным улучшениям продукта, поисковая система Google продолжает улучшаться еще и благодаря тому, что ее использует большое количество людей, а это значит, что Google может накапливать больше данных и, следовательно, учиться быстрее, чем конкуренты, оставляя их далеко позади.

Возвращаясь к вопросу о том, кто победит в отрасли беспилотных автомобилей: это будет не только тот, у кого окажется лучшее программное обеспечение, но и тот, у кого будет больше данных.

В 2016 году руководители Uber утверждали, что собранные с помощью их приложений для водителей и пассажиров данные о сотнях миллионов миль дадут им преимущество. Однако трудно поверить, что одни только данные из приложений для смартфонов будут соответствовать степени детализации, которую Google обеспечивает при помощи своих специально оборудованных автомобилей. Вот почему компания Uber считает, что беспилотные автомобили необходимо срочно включить в список ее услуг, даже если еще многие годы они будут функционировать в тандеме с водителями. У компании Tesla также есть подробная телеметрия, полученная от каждого транспортного средства, и это же касается автомобилей второго поколения с функциями самоуправления, которые включают подробные данные о камерах и радарах.

Большой вопрос для производителей автомобилей, не обладающих таким преимуществом, заключается в том, будут ли датчики, используемые для предотвращения несчастных случаев, или опция автоматической парковки достаточным для них инструментом для сбора необходимого количества данных, чтобы оставаться конкурентоспособными.

Конечно, многое зависит не только от того, сколько данных у вас есть, но и от того, насколько вы можете в них разобраться. Здесь Google, Tesla и Uber имеют большое преимущество перед традиционными автомобильными компаниями.

Поделиться:
Популярные книги

Ветер перемен

Ланцов Михаил Алексеевич
5. Сын Петра
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Ветер перемен

LIVE-RPG. Эволюция 2

Кронос Александр
2. Эволюция. Live-RPG
Фантастика:
социально-философская фантастика
героическая фантастика
киберпанк
7.29
рейтинг книги
LIVE-RPG. Эволюция 2

Идеальный мир для Социопата 5

Сапфир Олег
5. Социопат
Фантастика:
боевая фантастика
рпг
5.50
рейтинг книги
Идеальный мир для Социопата 5

Proxy bellum

Ланцов Михаил Алексеевич
5. Фрунзе
Фантастика:
попаданцы
альтернативная история
4.25
рейтинг книги
Proxy bellum

Ваантан

Кораблев Родион
10. Другая сторона
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Ваантан

Архил...?

Кожевников Павел
1. Архил...?
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Архил...?

Восьмое правило дворянина

Герда Александр
8. Истинный дворянин
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Восьмое правило дворянина

Шипучка для Сухого

Зайцева Мария
Любовные романы:
современные любовные романы
8.29
рейтинг книги
Шипучка для Сухого

Шатун. Лесной гамбит

Трофимов Ерофей
2. Шатун
Фантастика:
боевая фантастика
7.43
рейтинг книги
Шатун. Лесной гамбит

Бальмануг. (Не) Любовница 2

Лашина Полина
4. Мир Десяти
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Бальмануг. (Не) Любовница 2

Курсант: Назад в СССР 7

Дамиров Рафаэль
7. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: Назад в СССР 7

Книга пяти колец. Том 2

Зайцев Константин
2. Книга пяти колец
Фантастика:
фэнтези
боевая фантастика
5.00
рейтинг книги
Книга пяти колец. Том 2

Идеальный мир для Лекаря 7

Сапфир Олег
7. Лекарь
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 7

Отмороженный 6.0

Гарцевич Евгений Александрович
6. Отмороженный
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Отмороженный 6.0