"Я"
Шрифт:
Такое понятие как "вахта" на крейсере отсутствует полностью – это связано с тремя факторами: во-первых, для вдвое большего экипажа при столь больших сроках автономности – от нескольких месяцев и до двух-трех лет, – которые звездолет проводит в космосе, требуется слишком уж большое количество всякого рода консервов, а также всевозможных приправ к ним, после умелого приготовления скрашивающих жуткую тяжесть боевой работы в стальном "мужском монастыре", несущемся в бесконечной пустоте вдали от настоящей человеческой жизни на планетах; во-вторых, широкое применение разнообразных стимуляторов позволяет продлевать время непрерывного функционирования людей до недели, а этого часто бывает вполне достаточно для того, чтобы или поразить противника, или же просто выйти из боя; в-третьих, взводная структура флотов позволяет каждому отдельно взятому кораблю периодически выходить из боя и, будучи прикрытыми огнем остальных членов взвода, спокойно отдыхать ( обычно в это время солдаты отсыпаются ) столько, сколько ему будет нужно; и наконец, в-четвертых, наличие настроенных, приспособленных и отлаженных компьютерных программ позволяет в крайних и критических случаях сражения подстраховаться и дать возможность
Теперь поговорим о принципах движения корабля. Для перемещения у него есть два типа двигателей. Первый – это антигравитационные батареи, которые используются при старте корабля с планеты; они развивают небольшую мощность, поэтому корабль довольно-таки медленно выходит в космос. Второй тип двигателя используется исключительно в открытом космосе – это мощный скоростной маршевый двигатель, с помощью которого можно развить многотысячекратное ускорение и достичь околосветовой скорости. Каждый двигатель применяется отдельно друг от друга и работает независимо один от другого, причем направление силы тяги обоих типов двигателей, а значит, и вектор создаваемого ими ускорения, может быть любым, – и, что очень важно, он не зависит от направления вектора перемещения звездолета! В результате всего этого путь корабля в космосе в общем случае является производным от трех независимых векторов или, говоря проще, от шести составляющих: трех значений и трех направлений – скорости, ускорения антигравитационных батарей и ускорения маршевого двигателя; правда, в открытом космосе антигравитационные батареи не используют из-за их малой мощности, в то время как маршевый двигатель – наоборот – практически не используют при старте с планеты из-за его очень большой мощности. Масса космического крейсера невелика относительно колоссальной мощности его маршевого двигателя, поэтому инертность движения космолета "скрадывается" чудовищной мощью его основного движителя, вот почему при полете в открытом космосе боевой корабль имеет прекрасные скоростные характеристики и мобильность, в результате чего и получает великолепную, прямо-таки фантастическую свободу маневра, – и именно поэтому скользящий в пустоте звездолет сравнивают с небольшой птицей, летящей по хаотической непредсказуемой траектории.
Надобность в антигравитационной батарее возникает потому, что основной маршевый двигатель корабля настолько силен по своей природе, что с его помощью практически очень сложно добиться слабого ускорения, – ускорения в несколько раз превышающего земное; в техническом плане тысячекратное ускорение получить гораздо проще, но при старте с планеты с таким значительным ускорением корабль просто-напросто сожжет себе корпус из-за трения об атмосферу, вот почему на звездолеты и ставится малосильная антигравитационная батарея, которая тихо-мирно выводит корабль в космос, не повреждая ни корпус, ни саму атмосферу планеты.
Оба типа двигателей не нуждаются в каких-либо шлюзах или же отверстиях в корпусе, как и все вооружение крейсера, поэтому внешняя броня корабля и является монолитной. Корпус звездолета имеет больше десятка слоев, из них первый внешний, ближайший к космосу – это толстая прочная броня, а последний внутренний – это слой воды. Оболочка корабля сделана с таким расчетом, чтобы выдержать все максимальные расчетные нагрузки и защитить внутренние помещения от излучения и элементарных частиц, а слой воды, в котором можно, в случае надобности, выращивать водоросли, во время боя также служит хорошим поглотителем микрочастиц и излучения.
Отойдя подальше от планет, чтобы не мешать работе межпланетных и межзвездных туннелей, с помощью корабельного пространственно-временного преобразователя космолет может создать свой собственный временный туннель и переместиться по нему или, как говорят обычно, "совершить прыжок"; при этом имеют значение начальная скорость и направление движения корабля в момент прыжка, но в основном характеристики тоннеля зависят от распределения массы и энергии, как в начале тоннеля, так и у его конца. Во время прохождения прыжкового туннеля экипаж корабля ничем не ограничен: можно включать и выключать двигатели, можно включать и выключать оружие, можно делать еще массу дел, но лучше не делать ничего, потому что этими действиями нарушается естественная прокладка туннеля через пространство, и следовательно, из него можно будет выйти не туда, куда рассчитывали. Самое лучшее – это не предпринимать ничего такого, что могло бы повлиять на пространство и на распределение массы и энергии в нем в течение всего прыжка (а прыжок длится не более десяти-пятнадцати минут корабельного времени – обычно, минуты две-три), то есть с чем корабль вошел в туннель, с тем пусть он и выходит: если надо включить (выключить) двигатель или же оружие, то лучше всего это сделать до прыжка, тогда во время и после него у экипажа не будет никаких неожиданностей и неприятностей.
Тоннель, по которому звездолет перемещается в пространстве обладает одним очень интересным свойством: его можно использовать не только для перемещения в космосе, но и для разгона (торможения) корабля, а также для изменения направления его движения. Аппаратура современных крейсеров позволяет с достаточно высокой точностью задавать все предпрыжковые параметры – таким образом, звездолет может одним прыжком разогнаться от какого-либо первоначального значения скорости до практически световой или же наоборот – затормозиться от световой до практически нулевой скорости; также можно задать и направление скорости, которое требуется иметь после выхода из туннеля. Следует отметить, что в противовес полету в космосе, когда векторы перемещения, скорости и ускорения обычно никогда не совпадают, в момент выхода из туннеля направление скорости всегда совпадает с направлением движения корабля, однако ускорение от работающего двигателя не обязательно должно совпадать с векторами скорости и перемещения – оно может иметь любое направление – и этот факт существенно влияет на принятие решения относительно требуемых характеристик прыжка.
Сам прыжок – очень сложный процесс, особенно в бою: дело в том, что окончание туннеля, не имея регулирующей аппаратуры, стремится самостоятельно стабилизироваться, для чего тянется к областям с высокими концентрациями массы и излучения, а это – звезды, плотные пылевые облака, планеты и астероиды. Выйдя из тоннеля, корабль имеет высокие шансы сгореть в звезде, или же врезаться в планету; также он может сжечь себе оболочку, а потом и внутренние помещения в облаке пыли или же уйти за горизонт событий черной дыры. Погибнуть при прыжке – проще простого, особенно, в панике убегая с поля боя, потому что начальные условия прыжка в сражении постоянно меняются из-за применения обеими сторонами основного оружия, вот почему, включив для прыжка пространственно-временной преобразователь, капитан может только предполагать, а не точно знать, какие будут начальные условия и, следовательно, куда их "вынесет" в конце концов, ведь начальные условия – а это распределение массы и энергии в точке прыжка – в битве меняются постоянно, причем непредсказуемо и в широких пределах. Именно поэтому бросать своих товарищей в бою, а самому спасаться бегством – опасно; по логике ведения космических битв трусость наказывается самим вечным космосом, забирая беглеца к себе без возврата и без остатка! Наилучший и самый надежный способ уцелеть в сражении между звезд – это победа над противником, в результате которой завоевывается пространство, очищенное от вражеских кораблей – это же самое пространство-время через некоторый промежуток времени успокаивается и в нем можно вполне спокойно и безопасно прыгать куда угодно – космос, лишенный мешающих прыжкам выстрелов неприятельских кораблей, достаточно гостеприимен и предсказуем.
В момент прыжка в космосе образуется так называемый след туннеля, состоящий из массы и излучения вполне определенных качественных и количественных характеристик, по которых можно легко, но все же приблизительно, вычислить все данные тоннеля, который создал преследуемый корабль; также по ним можно довольно точно оценить скорость и направление движения корабля. По этим параметрам можно вычислить область космоса, где окажется преследуемый корабль после прыжка, а затем и самому прыгнуть туда. Именно так, по следам туннелей, можно настигнуть беглеца, потом быстро несколько раз выстрелить основным оружием, которое будет влиять на свойства пространства-времени и, следовательно, очень сильно и хаотически менять начальные параметры прыжка, не давая вражескому космолету возможности прыгнуть дальше, ну а затем – плотный огневой контакт – а кто по результатам боя выйдет победителем… кто знает… Итак, суммируя вышесказанное, суть преследования заключается в том, чтобы охотник оказался в пределах действия основного оружия и чтобы ему хватило времени применить его, не дав цели времени скрыться в глубинах космоса, а уже затем подтянутся другие преследователи – и успешно завершат сражение.
След тоннеля – нестойкое образование, – чем больше времени пройдет с момента прыжка, тем след станет более расплывчатым и неясным, рассеиваясь в космосе, а со временем исчезнет совсем.
Тем же методом – след в след – тысячи кораблей могут перемещаться один за другим, следуя за ведущим; но все равно ровного строя не получится, ибо своим движением корабли понемногу изменяют начальные условия прыжка для последующих колонн, и когда эти изменения накапливаются, тогда приходится делать паузу в перемещении звездного флота и ждать, когда же, наконец, пространство-время успокоится и можно будет продолжать движение дальше. По одному пути за одну навигацию в спокойном космосе вдали от разных сложных звездных образований можно провести не более сотни тысяч кораблей, после чего необходимо ждать примерно нескольких дней, чтобы повторить операцию вновь, и именно поэтому перемещение десятков и сотен звездных флотов (причем каждый флот насчитывает в своем составе порядка четверти миллиона кораблей) производятся по огромному количеству маршрутов. Привести сто миллионов кораблей к месту большого сражения очень сложно, а масштаб обычных современных боев требует многомиллионных подкреплений.
Прыжок – важный процесс, но точный прыжок – это лицо всего экипажа. Из одного точки ведут много дорог, притом что в это же самую точку приходит не меньше. Если корабли будут прыгать из одной точки пространства, но с разными скоростями и направлениями, то окажутся в совершенно разных частях космоса, и наоборот, корабли могут собраться что в четко заданном небольшом районе космоса, прыгнув туда из разных точек Галактики.
Длина прыжка измеряется расстоянием в обычном пространстве между началом и концом тоннеля и зависит от численного значения массы и энергии у начала и у конца туннеля: чем масса больше, тем прыжок длиннее, хотя зависимость между этими параметрами и нелинейная. Аппаратура корабля позволяет в незначительной степени изменять существующее распределение массы и энергии, влияя на начальные условия пространства-времени и, следовательно, на сам прыжок: таким образом осуществляется более точная настройка параметров прыжка и он, соответственно, становится более точным. С помощью этой аппаратуры подстройки бегство от преследователей облегчается, хотя несколько кораблей все равно имеют высокие шансы настичь беглеца.