Яблони на Марсе
Шрифт:
В 21 год Вудворд был уже в числе сотрудников Гарвардского университета. Здесь им были синтезированы сложные и биологически очень важные органические соединения: хинин (1944), кортизон (1951), резерпин (1956), хлорофилл (1960), тетрациклин (1962)… В 1965 году за эти работы он был удостоен Нобелевской премии. В 1976 году к списку почетных званий американского химика прибавилось еще одно: он был избран иностранным членом АН СССР.
…«Сенсация! Ученые покорили фотосинтез!»… «Конец голоду и нищете: теперь каждый сможет готовить себе пищу на любой вкус и в любом количестве!..»
Возможно, примерно такими словами газеты США и других стран оповестили в 1960 году мир о том, что
Да, конечно, это был крупный успех. Одно дело — разгадать состав и структуру этой знаменитой молекулы, совсем иное — синтезировать ее.
Вудворд готовился к подобному подвигу буквально с детских лет. Искусство, артистичность — вот что характеризует стиль его работ. Его подходы, методы так же отличаются от традиционных, как дедуктивный метод Шерлока Холмса от приемов инспектора Лестрейда. «Если путь к цели очевиден, то к такой цели неинтересно идти», — писал Вудворд. И дальше: «…я надеюсь, что „синтез ради синтеза“ будет продолжаться наперекор утилитарному духу нашего времени. Органический синтез — штука волнующая, полная неожиданностей, требующая смелости, подчас поднимающаяся до вершин искусства».
И все же над синтезом хлорофилла Вудворду пришлось изрядно потрудиться. Он возглавил громадный коллектив ученых-химиков. Ведь полный синтез хлорофилла включал в себя до 30 стадий!
Это дело потребовало долгих четырех лет. Вудворд как-то признался: «Мы не просто играем, а напряженно и упорно трудимся. Этот труд требует от нас не только большого экспериментального мастерства, но и железных нервов…»
Да, это была научная сенсация. В популярной литературе того времени это замечательное достижение приравнивалось к решению (и окончательному!) всей проблемы фотосинтеза. И даже революции в производстве пищи! Однако революция не состоялась. Почему?
Все очень просто. Хотя природа, надо полагать, не случайно использует хлорофилл как универсальный фотосинтетический пигмент всюду, начиная от простейших одноклеточных водорослей и кончая высшими растениями, — листу необходимо и многое другое: различные ферменты, особая структура, особые комплексы из белков, пигментов. Ученые — знатоки фотосинтеза давно уже поняли всю неизмеримую сложность этой грандиозной проблемы. Двухсотлетний опыт исследований показывает: не существует одной «загадки» фотосинтеза, а есть целый ряд ключевых вопросов. И механизм действия хлорофилла — лишь один из них. Поэтому-то блестящий синтез хлорофилла, осуществленный американцем Вудвордом (справедливости ради следует отметить, что почти одновременно с Вудвордом хлорофилл был синтезирован в ФРГ Мартином Штрелем и его сотрудниками), ничего не решал окончательно.
Глава 3
Физики в заповеднике
Что-то физики в почете.
Что-то лирики в загоне.
Дело не в сухом расчете,
Дело в мировом законе.
Когда, сойдя с маршрутного автобуса Тарту — Эльви — Валга, начинаешь подниматься в гору, из-за ее макушки постепенно возникают сначала очертания главного здания обсерватории Тыравере, а затем и луковки ее телескопов.
Здесь же, в 20 километрах к юго-западу
Вот, к примеру, исследования серебристых облаков, простирающихся над полюсами Земли. Это загадочные образования: они состоят из кристалликов льда, но расположены на таких высотах (70–90 километров), где воды заведомо не может быть!
Эстонские астрономы, действующие совместно с работающими на пилотируемых станциях космонавтами, близки к разгадке этих сложных фотохимических явлений, активно влияющих на земной климат.
Если бы инопланетяне пожаловали к нам на Землю, то, подлетая, пришельцы увидели бы шарик, окутанный слоем атмосферы, облепленный безмятежными белыми облачками и черными грозовыми тучами. Заметили бы инопланетяне и щедро льющийся на планету солнечный дождь. В потоках света яркие земные краски мерцали, переливаясь всеми цветами радуги.
Конечно, среди инопланетян нашлись бы физики. Они тотчас отметили бы, что Солнце посылает на Землю лучи с короткими длинами волн — фиолетовые, синие, а Земля возвращает в космос длинноволновое излучение — оранжевые, красные лучи. Отдает планета в космос и тепло — инфракрасные волны.
Своеобразными «космическими пришельцами» оказались и ученые сектора физики атмосферы ИАФА, которыми уже многие годы руководит доктор физико-математических наук Юхан Карлович Росс. Ведь они вроде бы занялись не своим делом, как бы попали на чужую научную «планету» — биологическую, стали изучать метаморфозы солнечной радиации в растительном покрове.
Прежде чем ехать в Эстонию, автор книги ознакомился с научными трудами Росса. Одна из его монографий называлась «Радиационный режим и архитектоника растительного покрова». На ее обложке был изображен заманчивый зелено-белый лист. Я полагал, что и в монографии страницы будут сплошь «зелеными» — этакая научная экскурсия в мир растений. Не тут-то было! То был совсем не ботанический атлас. Листая страницы, я обнаружил колонки цифр, косяки формул, волны графиков и иероглифы уравнений. То была теоретическая физика в самом прямом и высоком значении этих слов.
Зеленый лист и математические формулы? Парадокс? Ничуть. Все стало на свои места после беседы с Россом.
— Вы спрашиваете, как я, физик, пришел к биологии? — рассказывал ученый. — Это долгая и непростая история… Солнце дарит нам жизнь: греет, кормит. Это пока все еще наше основное богатство. И оно, конечно, требует призора…
Где и сколько радиации поступает на Землю — эти данные регистрирует мировая сеть актинометрических постов, разбросанных по всему земному шару. Наблюдения ведутся постоянно, но сеть эта прежде не давала никаких сведений о радиации, которая необходима растениям. Никто этим не занимался. В основном потому, что не было необходимых приборов. Вот этим сложным делом и занялись Росс и его сотрудники.
Конечно, вначале физики оставались физиками. И посев они воспринимали весьма абстрактно: как оптически однородную среду, рассеивающую солнечные лучи. Ученых прежде всего интересовал баланс лучистой энергии: сколько ее поглотили растения. Но вскоре физикам этого показалось мало.
Под палящими лучами, вооруженные приборами, измеряли физики распределение радиации в посевах кукурузы, сорго, подсолнечника, хлопчатника, составляли и решали сложные дифференциальные уравнения. Вели исследования и все более убеждались в необходимости теснейшего союза с биологами.