Юный радиолюбитель
Шрифт:
Рис. 1. Наэлектризованная расческа притягивает пушинки, волоски, кусочки бумаги (а); под электризующимся стеклом кусочки бумаги «танцуют» (б)
Но ни древние греки, ни другие мыслители и философы на протяжение многих столетий не могли объяснить это свойство янтаря и стекла. В XVII в. немецкому ученому Отто Герике удалось создать электрическую машину, извлекавшую из натираемого
В середине XVII в. в Голландии, в Лейденском университете, ученые нашли способ накопления электрических зарядов. Таким накопителем электричества была «лейденская банка» (по названию университета) — стеклянный сосуд, стенки которого снаружи и изнутри оклеены свинцовой фольгой (рис. 2).
Рис. 2. Лейденская банка-конденсатор
Лейденская банка, подключенная обкладками к электрической машине, могла накапливать и долго сохранять значительное количество электричества. Если ее обкладки соединяли отрезком толстой проволоки, то в месте замыкания проскакивала сильная искра и накопленный электрический заряд мгновенно исчезал. Если же обкладки заряженного прибора соединяли тонкой проволокой, она быстро нагревалась, вспыхивала и плавилась, т. е. перегорала, как мы часто говорим сейчас. Вывод мог быть один: по проволоке течет электрический ток, источником которого является электрически заряженная лейденская банка.
Сейчас подобные приборы мы называем электрическими конденсаторами (слово «конденсатор» означает «сгуститель»), а их не соединяющиеся между собой полоски фольги — обкладками конденсаторов.
Более совершенный, а главное почти непрерывный источник электрического тока изобрел в конце XVIII в. итальянский физик Александр Вольта. Между небольшими дисками из меди и цинка он помещал суконку, смоченную раствором кислоты (рис. 3).
Рис. 3. Элемент Вольта
Пока прокладка влажная, между дисками и раствором происходит химическая реакция, создавая в проводнике, соединяющем диски, слабый электрический ток. Соединяя пары дисков в батарею, можно было получать уже значительный электрический ток. Такие батареи называли «вольтовыми столбами». Они-то и положили начало электротехнике.
Подобный источник тока мы называем гальваническим элементом — по имени Луиджи Гальвани, открывшего явление электрического тока, а соединенные параллельно или последовательно элементы — батареями гальванических элементов.
Практика показала, что существуют два вида электричества. Один из них, соответствующий электрическому заряду медной пластины, стали условно считать положительным, а второй, соответствующий заряду цинковой пластины — отрицательным. В соответствии с этим первую пластину — полюс источника тока — стали называть положительным и обозначать знаком «+», а второй полюс — отрицательным и обозначать знаком «—». Условно стали также считать, что ток течет от положительного к отрицательному полюсу элемента или батареи.
Здесь я вынужден забежать немного вперед, чтобы ответить на вопрос, который, вероятно, у тебя уже возник: что такое электрический ток?
Электрический ток — это упорядоченное движение электрических зарядов. Чтобы разобраться в этом явлении природы, нам придется мысленно проникнуть в микромир вещества.
Веществом, или материей, называют все то, из чего состоят все существующие в природе предметы, тела: твердые, жидкие, газообразные. Все они образуются из атомов. Атомы чрезвычайно малы. Единица длины миллиметр совершенно непригодна для их измерения, так как она слишком велика. Не годится для таких измерений ни тысячная доля миллиметра — микрон, ни миллимикрон, который в тысячу раз меньше микрона. Подходит только десятая доля миллимикрона. Диаметр атомов различных веществ составляет от 0,1 до 0,4 нм (10– 10 м = 0,1 нм). Другими словами, на участке длиной 1 см могут свободно разместиться от 25 до 100 млн. атомов.
Некогда предполагали, что атом — мельчайшая неделимая частица вещества. Слово «атом» и означает «неделимый». Но впоследствии ученые узнали, что и атом состоит из более мелких частиц. В центре атома любого вещества находится ядро, размеры которого примерно в 100 тыс. раз меньше размеров самого атома. А потом оказалось, что и ядро состоит из еще более мелких частиц, которые были названы протонами и нейтронами. В настоящее время ученые успешно разрушают, или, как говорят, расщепляют ядра атомов и получают огромную скрытую в них энергию — атомную. На атомных электростанциях эта энергия превращается в энергию электрического тока. Атомная энергия приводит в движение морские корабли, например ледоколы, подводные лодки.
Атом можно представить как мир микроскопических частиц, вращающихся вокруг своей оси и одна вокруг другой. А в центре этого микромира находится плотное, массивное ядро, вокруг которого обращаются во много раз еще более мелкие, чем ядро, частицы — электроны. Электроны образуют оболочку атома.
Каковы размеры электронов? Чрезвычайно малы. Если булавочную головку мысленно увеличить до размера нашей планеты Земли, то при этом каждый атом металла, из которого сделана булавка, увеличился бы до размера шара диаметром 1 м. И вот в центре такого фантастически увеличенного атома мы увидели бы его ядро — шарик размером в типографскую точку, вокруг которого вращались бы еле заметные пылинки — электроны.
Если ты захочешь узнать размеры электрона, раздели число 3 на единицу с 12 нулями. Получишь примерный диаметр электрона, выраженный в миллиметрах.
Электроны часто называют «частицами». Однако это не следует понимать в том смысле, что электрон представляет собой нечто вроде твердого комочка или шарика. По современным представлениям электроны можно уподобить облачкам, окружающим атомное ядро и обращающимся вокруг него. Электрон как бы «размазан» по оболочке атома. Однако для наглядности объяснения физических явлений природы электроны часто условно, как бы символически, изображают на рисунках в виде шариков, вращающихся вокруг атомного ядра подобно искусственным спутникам вокруг Земли. Этого будем придерживаться и мы.
В атоме каждого химического элемента число электронов строго определенно, но неодинаково для разных химических элементов. Самую простую конструкцию имеет атом газа водорода — его оболочка содержит всего один электрон (рис. 4, а). Оболочка атома гелия (этим газом наполняют трубки для светящихся красным светом вывесок, рекламных надписей) имеет два электрона (рис. 4, б). Атомы других химических элементов содержат больше электронов, причем их электронные оболочки многослойны. Атом кислорода, например, имеет восемь электронов, расположенных в двух слоях: в первом — внутреннем, ближнем к ядру, слое движутся два электрона, а во втором, внешнем, шесть (рис. 4, в). У каждого атома железа по 26 электронов, а у каждого атома меди по 29. У атомов железа и меди электронные оболочки четырехслойные: в первом слое — два электрона, во втором и третьем по восемь, а все остальные электроны во внешнем, четвертом слое.