Юный радиолюбитель
Шрифт:
Вспомни схемы и рисунки, которыми в этой беседе ты пользовался, заставляя транзистор работать в режимах усиления и переключения. Да, транзистор ты включал по схеме ОЭ. И это не случайно: транзистор, включенный таким способом, в зависимости от его усилительных свойств может дать 10-200-кратное усиление сигнала по напряжению и 20-100-кратное усиление сигнала по току. Благодаря этому способ включения транзистора но схеме ОЭ пользуется у радиолюбителей наибольшей популярностью.
< image l:href="#"/>Рис. 90. Схемы включения р-п-р транзисторов
Существенным недостатком усилительного каскада на транзисторе, включенном по такой схеме, является его сравнительно малое
Включение транзистора по схеме ОК ты видишь на рис. 90, б. Входной сигнал подается на базу и эмиттер через эмиттерный резистор Rэ, который является частью коллекторной цепи. С этого же резистора, выполняющего функцию нагрузки транзистора, снимается и выходной сигнал. Таким образом, этот участок коллекторной цепи является общим для входной и выходной цепей, поэтому и название способа включения транзистора — ОК. Каскад с транзистором, включенным по такой схеме, по напряжению даст усиление меньше единицы. Усиление же по току получается примерно такое же, как если бы транзистор был включен по схеме ОЭ. Но зато входное сопротивление такого каскада может составлять 10-500 кОм, что хорошо согласуется с большим выходным сопротивлением каскада на транзисторе, включенном по схеме ОЭ.
По существу, каскад не дает усиления по напряжению, а лишь как бы повторяет подведенный к нему сигнал. Поэтому транзисторы, включаемые по такой схеме, называют также эмиттерными повторителями. Почему эмиттерными? Потому что выходное напряжение на эмиттере транзистора практически полностью повторяет входное напряжение.
Почему каскад не усиливает напряжение? Давай соединим резистором цепь базы транзистора с нижним (по схеме) выводом эмиттерного резистора Rэ, как показано на рис. 90, б штриховыми линиями Этот резистор — эквивалент внутреннего сопротивления источника входного сигнала Rвх, например микрофона или звукоснимателя. Таким образом, эмиттерная цепь оказывается связанной через резистор Rвх с базой. Когда на вход усилителя подается напряжение сигнала, на резисторе Rэ, являвшемся нагрузкой транзистора, выделяется напряжение усиленного сигнала, которое через резистор Rвх оказывается приложенным к базе в противофазе. При этом между эмиттерной и базовой цепями возникает очень сильная отрицательная обратная связь, сводящая на нет усиление каскада. Это по напряжению. А по току усиления получается такое же, как и при включении транзистора по схеме ОЭ.
Теперь о включении транзистора по схеме ОБ (рис. 90, в). В этом случае база через конденсатор Сб по переменному току заземлена, т. е. соединена с общим проводником питания. Входной сигнал через конденсатор Ссв подают на эмиттер и базу, а усиленный сигнал снимают с коллектора и с заземленной базы. База, таким образом, является общим электродом входной и выходной цепей каскада. Такой каскад дает усиление по току меньше единицы, а по напряжению — такое же, как транзистор, включенный по схеме ОЭ (10-200). Из-за очень малого входного сопротивления, не превышающего нескольких десятков ом (30-100 Ом), включение транзистора по схеме ОБ используют главным образом в генераторах электрических колебаний, в сверхгенеративных каскадах, применяемых, например, в аппаратуре радиоуправления
Ты чаще всего будешь пользоваться включением транзистора по схеме ОЭ, реже — по схеме ОК. Но это только способы включения. А режим работы транзистора как усилителя определяется напряжениями на его электродах, токами в его цепях и, конечно, параметрами самого транзистора.
Качество и усилительные свойства биполярных транзисторов оценивают по нескольким электрическим параметрам, которые измеряют с помощью специальных приборов. Тебя же, с практической точки зрения, в первую очередь должны интересовать три основных параметра: обратный ток коллектора IКБО, статический коэффициент передачи тока h21э (читают так: аш два один э) и граничная частота коэффициента передачи тока fгp.
Обратный ток коллектора IКБО – это неуправляемый ток через коллекторный р-n переход, создающийся неосновными носителями тока транзистора Он характеризует качество транзистора: чем численное значение параметра IКБО меньше, тем выше качество транзистора. У маломощных низкочастотных транзисторов, например, серий МП39-МЕ42, IКБО не должен превышать 30 мкА, а у маломощных высокочастотных — 5 мкА. Транзисторы с большими значениями IКБО в работе неустойчивы.
Статический коэффициент передачи тока h21э характеризует усилительные свойства транзистора. Статическим его называют потому, что этот параметр измеряют при неизменных напряжениях на его электродах и неизменных токах в его цепях. Большая (заглавная) буква «Э» в этом выражении указывает на то, что при измерении транзистор включают по схеме ОЭ. Коэффициент h21э, характеризуется отношением постоянного тока коллектора к постоянному току базы при заданных постоянном обратном напряжении коллектор-эмиттер и токе эмиттера. Чем больше численное значение коэффициента h21э, тем большее усиление сигнала может обеспечить данный транзистор. [1]
1
В популярной радиотехнической литературе выпуска предыдущих лет усилительные свойства транзисторов оценивались статическим коэффициентом усиления Вст. Численно коэффициент Вст равен коэффициенту h21Э.
Граничная частота коэффициента передачи тока fгр, выраженная в килогерцах или мегагерцах, позволяет судить о возможности использования транзистора для усиления колебаний тех или иных частот. Граничная частота fгр транзистора МП39, например, 500 кГц, а транзисторов П401-П403 — больше 30 МГц. Практически транзисторы используют для усиления частот значительно меньше граничных, так как с повышением частоты коэффициент h21э транзистора уменьшается.
При конструировании радиотехнических устройств надо учитывать и такие параметры транзисторов, как максимально допустимое напряжение коллектор-эмиттер UКЭ max, максимально допустимый ток коллектора IК max, а также максимально допустимую рассеиваемую мощность коллектора транзистора РК max — мощность, превращающуюся внутри транзистора в тепло.
Основные сведения о параметрах биполярных транзисторов широкого применения ты найдешь в приложении 7.