Юный техник, 2001 № 03
Шрифт:
Формы взаимодействия галактик крайне разнообразны. Среди них нет ни одной похожей. Здесь и звездные перемычки, и цепочки из пяти-шести галактик, и какие-то дугообразные структуры. Но пока не существует теории, объясняющей это явление.
Например, академик В.А.Амбарцумян считает, что двойные системы появились в результате общего происхождения галактик. Потом они отдаляются друг от друга, и тогда между ними возникают перемычки и мосты. Однако другие ученые, промоделировав процесс взаимодействия галактик на компьютерах, считают, что видимые явления объясняются случайной их встречей. Но тут вмешивается теория вероятностей:
Словом, ни одна из предложенных гипотез и моделей не в состоянии объяснить этот космический феномен. Ясно лишь, что здесь действуют какие-то явления совершенно иной природы, нежели гравитация и магнетизм. Но какие?..
Как ни странно, самое разумное объяснение сегодня — самое экзотическое: «мосты» между галактиками строят разумные расы, стоящие на невероятно высоких ступенях развития. Ибо в этих образованиях слишком высок «коэффициент искусственности» — понятие, вводимое для явлений, не подчиняющихся не только законам природы (мы не все их знаем), но даже принципам, на которых построены эти самые законы.
Рисунки Ю. САРАФАНОВА
УДИВИТЕЛЬНО, НО ФАКТ
В природе все поет. Надо только научиться слушать
Художник Ю. САРАФАНОВ
…Это походило на фокус. Обыкновенный зеленый огурец поместили в светонепроницаемый футляр, закрыли, щелкнули парой тумблеров — и в лаборатории зазвучала странная мелодия.
— Это так поет огурец, — пояснил старший научный сотрудник Института прикладной математики Николай Наумов. — Слышите, голос его оптимистичен и весел. Стало быть, огурец свеж…
Суть «фокуса» оказалась вполне реалистичной. Оказывается, о том, что самый обыкновенный огурец, яблоко, любой цветок или даже шкаф могут звучать, исследователям известно как минимум полвека.
Вспомним эпизод из давнего рассказа Виктора Драгунского.
«Да он живой, он светится!» — воскликнул некогда потрясенный Дениска, герой рассказа, впервые увидев светлячка.
Но думается, и писателю, и его герою было невдомек, что светиться могут не только светлячки, гнилушки, некоторые породы рыб, но и вообще любое живое существо. Вот только свечение это не так-то просто заметить…
Как ни странно, но впервые его зафиксировали отнюдь не биологи, а… астрономы.
Заполучив в начале 1950-х годов свое распоряжение спектрометр и фотоумножитель, они из любопытства направляли окуляры приборов не только на свет далеких звезд, но часто и на земные объекты. И однажды перед объективом, привыкшим ловить по ночам мерцание далеких звезд, оказался растущий корешок гороха.
Перо регистратора дрогнуло — корешок светился!
Более слабого излучения трудно было найти в природе — подсчитали: грамм корешков светит в десятки, тысячи раз слабее известного всем Иванова светлячка. Невидимые глазу лучи так и назвали — сверхслабым свечением.
Такой свет испускают клетки любого органа, и, самое главное, для этого не требуется никакого фермента, обязательного для биолюминесценции. Более того, характер свечения во многом зависит от состояния живой клетки.
Попросту говоря, чем хуже ее самочувствие, тем свечение слабее.
Ну, свет — это электромагнитное излучение. И чтобы считать фотоны, излучаемые клеткой, оказалось удобным перевести свечение в акустические сигналы. Так в группе Наумова впервые и услышали «голоса» живых клеток.
И перед исследователями открылись удивительные картины. Удалось, например, установить, что яблоко пищит очень жалобно, монотонно. Стали думать, отчего это оно, бедное, жалуется. То ли на то, что его скоро съедят, то ли, наоборот, на то, что осталось невостребовано?..
Расшифровать полностью эти жалобы пока не удается — исследования «голосов», по существу, только начались.
Но уже сейчас ясно — «озвучить» можно практически любой плод. Достаточно поместить его в камеру, датчики которой улавливают излучаемые фотоны — элементарные частицы электромагнитного поля. Все показания записываются очень чувствительным прибором. Каждой волне соответствует определенный звук, нота. Так и рождается музыка. Невидимое становится слышимым. А «мелодии света» дают возможность контролировать состояние того или иного живого существа, диагностировать нарушения в самом зародыше.
Озвучить можно даже молекулы ДНК. Так что с нашими генами тоже можно общаться. А это значит, что исследователи получили возможность еще с одной стороны подступиться к разгадке одной из самых великих тайн природы. А там, глядишь, научатся и исправлять недостатки еще в процессе «проектирования» будущего организма.
3. СЕМЕНОВА
ВЕСТИ ИЗ ЛАБОРАТОРИЙ
Оптика третьего тысячелетия
В электронике меньше чем за половину столетия элементная база сменилась несколько раз: лампы, транзисторы, интегральные схемы первого поколения, второго…
В оптике ситуация иная. Главный элемент оптики — линза появилась две тысячи лет назад (первая из них называлась «Глаз Нерона».
Это был отшлифованный кусок горного хрусталя, сквозь который грозный император разглядывал собеседника), и лишь в последние десятилетия появились элементы с неоднородным распределением показателя преломления. С их помощью оказалось возможным делать такие приборы, какие иным способом сделать просто нельзя.
Начнем с медицины.
Несмотря на наличие рентгена и прочих физических способов, врач предпочитает заглянуть внутрь организма собственным глазом. Для этой цели давно уже создаются эндоскопы.
Первоначально они представляли собой металлическую трубку с системой линз и давали очень четкое изображение, но имели серьезный недостаток — большой диаметр. Это делало их во многих случаях неприменимыми. Затем появились гибкие, значительно более тонкие волокнистые эндоскопы, состоящие из регулярно уложенных гибких светопроводящих волокон. Чем больше волокон, тем выше четкость изображения, наблюдаемого врачом. Это удобнее врачу, но эндоскоп становится толще и травмирует больного.