Чтение онлайн

на главную

Жанры

Юный техник, 2002 № 08
Шрифт:

А в основе теории лежит представление о существовании эфира и его движении. При прохождении тока, считал Максвелл, вокруг проводника возникает эфирный вихрь, это и есть его магнитное поле. При любом изменении магнитного поля в эфире возникает вихрь электрический. Радиоволны и свет, опять же по теории Максвелла, это лишь волновой процесс, распространяющийся в эфире. Но существует ли эфир в действительности или это лишь удобная логическая конструкция, помогающая свести все явления в стройную систему?

Еще в 1877 году, когда теория только начинала свое шествие, сам Максвелл считал не лишним это проверить и предложил измерить скорость движения Земли относительно

эфира, наполняющего мировое пространство. Поскольку, как предполагали, эфир неподвижен, при движении по орбите со скоростью 30 км/с нашу планету должен обдувать эфирный ветер, имеющий точно ту же скорость.

В 1887 году американские исследователи А. Майкельсон и Э. Морли поставили первый эксперимент по ее измерению. Однако из-за несовершенства приборов эфирный ветер обнаружить им не удалось.

В 1901–1905 годах сотрудники Майкельсона, Морли и Миллер, применив более совершенную аппаратуру, обнаружили эфирный ветер. Но скорость его оказалась не 30, а только 3,5 км/с. Это озадачило ученых. Получалось, что мировой эфир есть, но это несколько иной эфир, чем тот идеальный, существование которого предполагал Максвелл.

Малую скорость объяснили тем, что эфирный ветер частично задерживается атмосферой, и в 20-х годах прошлого века Миллер построил дом на горе Маунт Вильсон (США) и провел измерения на высоте 1800 м. Выяснилось, что здесь скорость эфирного ветра выше и достигает 10 км/с. Существование эфира было доказано.

Сегодня обнаружить эфирный ветер значительно проще. В НИИ авиационного оборудования, в лаборатории профессора В. А. Ацюковского, был предложен для этой цели оригинальный способ.

Луч лазера, обдуваемый эфирным ветром, изгибается словно стебель растения на ветру. Только изгиб этот очень мал. Поэтому лучше сравнивать это явление с прогибающейся на ветру балкой, один конец которой жестко заделан в стену. Луч лазера длиною семь метров периодически смещается на 0,2–0,3 мм. Это связано с тем, что в течение суток эфирный ветер меняет скорость и направление.

Установка для таких измерений состоит из жестко закрепленного лазера (школьный ЛГ-56 или лазерная указка) и расположенного напротив мостового фотометрического детектора смещения луча (рис. 1).

Он, в свою очередь, состоит из четырех фотосопротивлений типа ФСК-2, попарно включенных в мостовые схемы (см. рис. 2).

Рис. 2

Питаются мосты напряжением 9 В от батареи «Крона». Каждый мост содержит два резистора (один из них переменный) и два фотосопротивления типа ФСК-2. Балансировку моста производят при равномерном освещении фотосопротивлений лазером. Сигналы с диагоналей моста хорошо бы подать на самописец или компьютер, что позволило бы сразу извлечь из эксперимента максимум информации. Но такая установка требует немалых денег. Потому в опыте можно использовать микроамперметр и его показания записывать в тетрадь, отмечая дату и время замера.

По этим данным можно построить смещение луча относительно первоначального положения, а также вычислить отношения скоростей эфирного ветра в различные моменты измерения по

формуле: V1/V2 = D1/D2, где V1/V2 — скорости эфирного ветра в разные моменты времени, a D1/D2 — соответствующие им смещения луча.

Возможны два варианта конструкции. Первый (рис. 1) предусматривает установку лазера и фотоприемника на большом расстоянии. Для этого нужно помещение с надежным бетонным полом, расположенное вдали от дорог, шумных улиц, работающих станков и других источников вибрации. Но не советуем ставить опыт в подвале. Толстые каменные стены сильно снижают скорость эфирного ветра и смещение луча. Помните также, что эфирный ветер совсем не проходит через металлы. Лучше всего располагать установку на открытом воздухе, на камнях или на скале.

Второй вариант установки (рис. З) основан на удлинении луча путем его многократного отражения в зеркалах.

Нащупав эфирный ветер, вы откроете путь к новой физической реальности, где вселенная вечна и бесконечна, где есть неисчерпаемые источники энергии и возможно движение со скоростью, значительно превышающей скорость света… Об этом вы узнаете из статей о работах профессора В.А. Ацюковского в ближайших номерах нашего журнала. На возникшие вопросы москвичи могут получить ответы на лекциях профессора В.А.Ацюковского в лектории Политехнического музея каждое воскресенье в 12 часов, начиная с 15 сентября.

А. ИЛЬИН

Рисунки автора

ЗАОЧНАЯ ШКОЛА РАДИОЭЛЕКТРОНИКИ

Можно ли видеть в темноте?

Приборы ночного видения на основе усилителей яркости были созданы для военных целей еще в 30-е годы XX века. В битве на Курской дуге Красная Армия впервые применила танки, оснащенные такими приборами.

Сегодня вы можете купить бинокль, оснащенный усилителем яркости. Он позволяет видеть интересные вещи.

Многим приходилось слышать в саду крик совы, но кто ее ночью видел? В городе, это мало кто знает, тоже живут совы, филины и летучие мыши. В общем, бинокль с усилителем яркости — вещь любопытная, но стоит он дорого. Гораздо дешевле собрать из покупных деталей подзорную трубу ночного видения.

Сердцем прибора ночного видения является электронно-оптический преобразователь (ЭОП). В простейшем случае это — стеклянный цилиндр, из которого откачан воздух. На одном из его донышек нанесен светочувствительный слой, служащий катодом, на другой анод — люминофор.

Если создать на светочувствительном слое при помощи линзы действительное изображение, то каждая его точка начнет испускать электроны. Их подхватит напряжение, приложенное к аноду, и они, разогнавшись с большой скоростью, вызовут свечение люминофора и создадут на нем такую же картину, что на катоде, только более яркую.

Сегодня ЭОПы имеют встроенные фотоэлектрические усилители, позволяющие получать четкое изображение, усиленное по яркости в сотни раз.

Современный ЭОП отечественного производства — модель «МИНИ-1» — показан на рис. 1.

Поделиться:
Популярные книги

Набирая силу

Каменистый Артем
2. Альфа-ноль
Фантастика:
фэнтези
боевая фантастика
рпг
6.29
рейтинг книги
Набирая силу

Сердце Дракона. Том 11

Клеванский Кирилл Сергеевич
11. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
6.50
рейтинг книги
Сердце Дракона. Том 11

Польская партия

Ланцов Михаил Алексеевич
3. Фрунзе
Фантастика:
попаданцы
альтернативная история
5.25
рейтинг книги
Польская партия

Восьмое правило дворянина

Герда Александр
8. Истинный дворянин
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Восьмое правило дворянина

Ты предал нашу семью

Рей Полина
2. Предатели
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Ты предал нашу семью

Как я строил магическую империю 2

Зубов Константин
2. Как я строил магическую империю
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Как я строил магическую империю 2

Наследник старого рода

Шелег Дмитрий Витальевич
1. Живой лёд
Фантастика:
фэнтези
8.19
рейтинг книги
Наследник старого рода

Возвращение Низвергнутого

Михайлов Дем Алексеевич
5. Изгой
Фантастика:
фэнтези
9.40
рейтинг книги
Возвращение Низвергнутого

Лорд Системы

Токсик Саша
1. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
4.00
рейтинг книги
Лорд Системы

Довлатов. Сонный лекарь 2

Голд Джон
2. Не вывожу
Фантастика:
альтернативная история
аниме
5.00
рейтинг книги
Довлатов. Сонный лекарь 2

Дурашка в столичной академии

Свободина Виктория
Фантастика:
фэнтези
7.80
рейтинг книги
Дурашка в столичной академии

Барон диктует правила

Ренгач Евгений
4. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон диктует правила

Кодекс Охотника. Книга XIII

Винокуров Юрий
13. Кодекс Охотника
Фантастика:
боевая фантастика
попаданцы
аниме
7.50
рейтинг книги
Кодекс Охотника. Книга XIII

Удобная жена

Волкова Виктория Борисовна
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Удобная жена