Юный техник, 2008 № 02
Шрифт:
Однако первые образцы новых наножилетов тоже оказались тяжелы и громоздки. Вот тогда-то специалисты и задумались над созданием «жидкой» брони. Ведь нынешние нанотехнологии позволяют создать материалы, например, из смеси атомов кремнезема и полиэтиленглюколя. Такая смесь в обычном состоянии не имеет четко выраженной кристаллической структуры и напоминает переохлажденную воду, которая обладает свойствами жидкости. Но достаточно малейшего механического воздействия, крошечного толчка — и жидкость тут же превращается в твердый лед.
Нечто подобное происходит в жидкой наноброне. Удар по ней приводит к тому, что раствор в мгновенье
Впрочем, и такая конструкция — еще не идеал, считают специалисты. В самом деле, что будет, если боец повредит свой жилет, продираясь сквозь колючий кустарник? Вся защитная жидкость попросту выльется…
Хорошо бы, наверное, и сам жилет сделать саморемонтирующимся. Чтобы повреждения заживали на нем, как царапины на коже. Это случится еще не завтра. Но сами исследования уже вышли за пределы лабораторий. На специализированных полигонах, в обстановке строгой секретности ученые и военные эксперты продолжают отработку спецснаряжения для рыцарей XXI века. И что еще удивительного они придумают, мы постараемся вам рассказать.
По материалам выставки Inerpolitex
публикацию подготовил Г. МАЛЬЦЕВ
БРОНЯ ИЗ САПФИРА
Стекла, как известно, тоже бывают бронированными. Ныне квадратный метр бронированного стекла толщиной в 10 см весит около 80 кг — не каждый автомобиль способен нести такие окна.
И вот ученые Научно-технологического комплекса «Институт монокристаллов» НАН Украины в Харькове предложили использовать вместо бронированного стекла новый трехслойный материал на основе искусственного сапфира. В проекте также участвуют сотрудники питерского Физико-технического института имени А.Ф. Иоффе, словацкого Института неорганической химии и чешской компании Saint Gobain Advanced Ceramics.
По словам одного из разработчиков, заведующего отделом корунда НТК «Институт монокристаллов» Леонида Литвинова, первым встречает пулю именно слой специального упрочненного сапфира. Его задача — превратить конусную пулю в цилиндрическую, то есть сплющить ее кончик. Для этого искусственный сапфир подвергли спецобработке физическими и химическими методами, максимально увеличив его прочность.
В итоге, как показали испытания, пуля сквозь такой «сэндвич» не проникнет, лишь в месте попадания появятся трещины. При этом новая прозрачная броня втрое тоньше обычного пуленепробиваемого стекла, причем сам сапфир имеет толщину всего 7 мм!
ВЕСТИ ИЗ ЛАБОРАТОРИЙ
Суперпроводящий кремний
Новую страницу в исследованиях высокотемпературной сверхпроводимости открыли недавно французские физики, пишет известный научный журнал «Нейчур». Им удалось то, над чем другие бились долгие десятилетия…
И в самом деле, вот уже почти сто лет наука пытается решить проблему сверхпроводимости. Само это явление, заключающееся в том, что при определенных условиях — температуре, давлении и т. д. — материал полностью теряет электрическое сопротивление, было открыто в 1911 году нидерландским физиком Г.Камерлинг-Оннесом. За это он вскоре был удостоен Нобелевской премии (1913 г.).
После этого данное явление долгое время оставалось как-то вне поля зрения физиков. И хотя в 1972 году американским физикам Джону Барлину, Ли Куперу и Джону Шрифферу удалось получить еще одну Нобелевскую премию — за теоретическое обоснование основ сверхпроводимости, физическая природа этого явления и сегодня во многом остается тайной за семью печатями.
Никто толком не знает, почему одни материалы при снижении их температуры ниже определенной отметки становятся сверхпроводниками, а другие — нет. Кроме того, никому пока не удалось получить сверхпроводимость при обычной комнатной температуре. Обычно сверхпроводники приходится охлаждать до температур, близких к абсолютному нулю (-273,15 °C), что достаточно хлопотно и дорого. Даже сплав на основе технеция, имеющий на сегодняшний день самую высокую температуру перехода в сверхпроводящее состояние, нуждается в охлаждении до 11,2К. Поэтому о широком распространении в технике подобных сплавов долгое время не могло быть и речи.
Однако в 1986 году сотрудникам корпорации IBM Иоханесу Бернардсу и Карлу Мюллеру удалось открыть так называемые сверхпроводящие керамики — новый класс соединений, способных переходить из одного состояния в другое при менее низких температурах.
Так, керамика на основе кислорода, меди, бария и лантана, в обычных условиях вообще не проводящая электрический ток, приобретала сверхпроводимость уже при 58К! За открытие этого состояния, названного высокотемпературной сверхпроводимостью, исследователи были опять-таки удостоены Нобелевской премии.
А еще через год группа американских физиков, модифицировав состав керамики, получила сверхпроводимость при 92К! Это уже выше температуры кипения жидкого азота, получение которого относительно дешево. А потому, хотя физическая подоплека этого явления во многом так и остается непонятной, сверхпроводящие керамики уже начали применять в технике, например, для устройства сверхпроводящих магнитов в ускорителях.
Абсолютный рекорд на сегодня, кстати, составляет 138К. Он принадлежит соединению, состоящему из атомов кислорода, талия, бария, меди и ртути.
Впрочем, и у подобных металлокерамик есть свои недостатки. Во-первых, они очень дорогие. Во-вторых, очень хрупкие, и это затрудняет их применение. А потому физики из Национального центра научных исследований Франции в Гренобле под руководством Этьена Бустаре в поисках новых сверхпроводящих материалов провели недавно серию исследований с известным всем кремнием и получили материал, обладающий сверхпроводимостью при нормальном атмосферном давлении.
Что здесь примечательного?
Как известно, кремний имеет кристаллическую решетку сродни решетке алмаза и при комнатной температуре ведет себя как диэлектрик. В его структуре столь мало свободных носителей электрического заряда, что ток через него практически не идет. Однако электропроводность кремния можно изменять в широких пределах, вводя в него примеси других элементов.