Юный техник, 2011 № 11
Шрифт:
В 1958 году ученый вернулся к экспериментам и добавил к смеси газов сероводород. Он предположил, что источником сероводорода на молодой планете были многочисленные вулканы, которые тогда были намного активнее, чем сейчас. Именно благодаря вулканическим выбросам сформировались оазисы, в которых зародилась примитивная жизнь.
В 2007 году ученый скончался. Но эксперимент его был продолжен. Совершенствование аналитических методов позволило его последователям существенно улучшить результаты опытов многолетней давности.
В 2008 году повторный анализ образцов Миллера с использованием современных методик выявил 10 аминокислот, которые не
В новых экспериментах химикам удалось выявить в реакционной смеси 23 аминокислоты. Ученые пришли к выводу, что условия, в которых возникли первые аминокислоты, могут быть широко распространены во Вселенной. Соотношение аминокислот, полученных в результате эксперимента, оказалось близко к аминокислотам, обнаруженным в составе метеоритов. По мнению исследователей это указывает на то, что жизнь могла как зародиться на Земле, так и быть привнесенной из космоса.
ВЕСТИ ИЗ ЛАБОРАТОРИЙ
«Сосуды» для электричества
Первым таким сосудом была, как известно, лейденская банка. Но заряд в ней держался недолго. А потому на смену ей ученые изобрели аккумуляторы. Причем усовершенствование их не закончено и поныне. И вот почему…
В фантастическом романе «Пикник на обочине» братья Стругацкие описали идеальный источник энергии — вечный аккумулятор «этак», мечту современных автомобилистов. Садясь в машину, водитель достает из кармана небольшой предмет, не больше портсигара, вставляет его в гнездо вместо ключа зажигания и трогается с места.
Ну а что мы имеем сегодня? По расчетам доктора химических наук Александра Скундина из Института физической химии и электрохимии имени А.Н. Фрумкина РАН, чтобы соперничать с автомобилями, силовой агрегат электромобиля должен иметь мощность хотя бы 10 кВт. Запас хода пусть будет на 10 часов езды. Значит, электромобилю потребуется батарея емкостью 100 киловатт-часов. Ныне удельная емкость свинцового аккумулятора составляет порядка 30 Вт/ч на килограмм веса. То есть для электромобиля он будет весить… 3(!) тонны.
Правда, свинцовые аккумуляторы ныне все чаще заменяют литий-ионными, у которых характеристики получше — 100–200 Вт/ч на килограмм. Но и при этом электромобиль вынужден был бы возить источник энергии массой в 500 кг. Причем пока не делает никто больших литий-ионных аккумуляторов. Их используют разве что в мобильниках и прочих подобных устройствах.
И это не случайно. Во-первых, мощную батарею придется составлять из нескольких сотен малых аккумуляторов, а хорошо известно: чем больше элементов в системе, тем менее она надежна. Литий-ионный аккумулятор боится холода, его нельзя перегревать — при 100 градусах он может взорваться. В-третьих, литий чрезвычайно бурно вступает в реакцию с водой. И если батарея весом в полтонны попадет при аварии в воду — взрыв будет такой, что мало никому не покажется за сотни метров в округе.
Наконец, помимо большого веса слабое место аккумулятора — необходимость его периодически заряжать. А это процесс не быстрый — ныне даже малые литий-ионные аккумуляторы для мобильных устройств заряжаются не менее часа.
Кроме того, если брать энергию для зарядки от обычных промышленных ТЭЦ, то все разговоры об экологичности электромобилей превращаются в миф. Какая, собственно, разница, загрязняют ли атмосферу в городе выхлопные газы автомобилей или дымовые трубы ТЭЦ?
Именно поэтому ныне создатели автомобилей все чаще обращают свои взоры на комбинированные установки, каждая из которых включает в себя электродвигатель, аккумулятор и какой-то мобильный источник энергии. Ныне самый дешевый — бензиновый двигатель. На худой конец — солнечная батарея либо топливный элемент.
Почему «на худой»? Да потому, что стоят такие батареи и топливные элементы весьма дорого, а КПД у них невелик. Поэтому специалисты из Объединенного института высоких температур РАН предлагают в таких случаях использовать сменные одноразовые химические батареи. Их удельная емкость в несколько раз больше, чем у литий-ионных аккумуляторов.
«Если наладить систему сбора и переработки батарей, такое решение окажется совсем не плохим, — полагает один из разработчиков, Борис Клейменов. — Мы считаем, что основой успеха послужит не сам по себе аккумулятор, а энергетическая установка, которая состоит из аккумулятора и химического генератора…»
Химический генератор дает основную часть энергии и для двигателя, и для заряда аккумулятора, который служит для того, чтобы покрывать пиковые нагрузки, например, при разгоне с места. Возможно в схеме и наличие суперконденсатора. В отличие от аккумулятора, он заряжается и разряжается чрезвычайно быстро, давая высокую мощность для быстрого разгона.
Наши специалисты даже сделали образец такой машины. Она имеет алюминиево-воздушный генератор, который позволяет получать электричество за счет окисления алюминия, и обычные свинцовые аккумуляторы. «В итоге удельная энергоемкость составляет 140 Вт/ч на килограмм. Это совсем не плохо, хотя с литиевым аккумулятором получилось бы 200–300 Вт/ч», — пояснил Клейменов. Заправка такой машины будет занимать не больше времени, чем бензинового автомобиля. Просто техник на станции техобслуживания устанавливает взамен разряженного новый генератор, и можно ехать. Разряженный же генератор промывают, заполняют свежим алюминием, и он снова готов к работе. Отходы же отправляют на переработку, получая в итоге электролиза опять-таки алюминий.
Правда, расчет показывает, что при нынешних ценах на алюминий стоимость 100 км пути в городе на таком электромобиле составит 500 рублей. Это, конечно, дороговато. Но с учетом того, что цены на бензин все растут, а технологии совершенствуются, со временем такое решение может оказаться экономически вполне оправданным.
Никель-кадмиевые аккумуляторы.