Юный техник, 2013 № 06
Шрифт:
Ну, а если серьезно, то первые существенные попытки отловить бозон Хиггса были предприняты на рубеже XX и XXI веков с помощью Большого электронно-позитронного коллайдера (БАК) или Large Electron-Positron Collider (LEP), находящихся в Европейской организации ядерных исследований (ЦЕРН) неподалеку от Женевы.
В результате многочисленных опытов на ускорителе был установлен нижний порог массы бозона Хиггса — 114,4 гигаэлектронвольта. Первый цикл экспериментов на БАКе был завершен в 2001 году.
Следующие циклы экспериментов проводили
В ноябре 2011 г. цифры были скорректированы — 141 и 115 гигаэлектронвольт соответственно. Окончательные результаты Теватрон а, завершившего свою работу осенью 2011 г., показали, что масса бозона Хиггса находится в интервале от 115 до 135 гигаэлектронвольт.
Затем за дело снова взялся БАК, модернизированный за это время. На этом ускорителе ученые сталкивали разогнанные во встречных пучках до околосветовой скорости протоны, а затем фиксировали частицы и излучения, получившиеся в результате очередного столкновения, с помощью 4 специализированных детекторов — двух крупных (ATLAS и CMS) и двух средних (ALICE и LHCb). Анализом полученных данных занимались две группы ученых, работавших независимо друг от друга.
В 2010 г. первыми положительными результатами работы коллайдера стало рождение четырех неустойчивых элементарных частиц — мюонов, образовавшихся в результате столкновения протонов. Физики предположили, что в цепочке превращений от протонов до мюонов промежуточным звеном мог быть неуловимый бозон Хиггса.
Далее физики стали накапливать статистику данных о столкновениях частиц в ускорителе, все повышая энергетику столкновений. Они заявляли, что порог, за которым коллайдер начнет «чувствовать» бозон Хиггса, находится на уровне пяти обратных фемтобарн. В «переводе» на наш обыденный язык, 5 обратных фемтобарн соответствуют примерно 350 квадриллионам столкновений протонов за сеанс.
Этот порог был перейден в октябре 2011 г. И тогда же было сообщено, что согласно завершившимся исследованиям ученых Физического института им. П.Н. Лебедева РАН, Института теоретической физики им. Л.Д. Ландау РАН и Кельнского университета «спектральный индекс космологических возмущений согласуется с наблюдениями, если хиггсовская масса лежит в интервале от 136 до 185 гигаэлектронвольт».
В переводе на более понятный язык, это значило, что и в материалах, полученных в результате работы ВАКа, и в данных, полученных со специализированного спутника WMAP, были обнаружены некие следы частицы, похожей на бозон Хиггса.
В декабре 2011 г. ученые подтвердили, что опять-таки видели некоторые «намеки» на бозон Хиггса.
В июне 2012 г. количество столкновений и плотность потока протонов в Большом адронном коллайдере были доведены до уровня,
В конце июня 2012 г. математик Питер Войт из Колумбийского университета в Нью-Йорке (США) проговорился, что с помощью ATLAS и CMS получена информация о параметрах бозона Хиггса с массой 124–125 гигаэлектронвольт.
Впрочем, многие ученые пока еще сомневаются, является ли открытый тип бозона частью Стандартной модели или же это другой вариант частицы, о котором говорят некоторые другие теории.
Во всяком случае, новый бозон, который по ряду свойств соответствует бозону Хиггса, может оказаться лишь первым из ряда таких частиц. «Такая возможность предсказана теорией суперсимметрии, — заявил лауреат Нобелевской премии 1984 г. по физике, экс-гендиректор Европейской организации ядерных исследований (ЦЕРН) Карло Руббиа.
Однако профессор Руббиа все же осторожен в своих оценках. «Теория суперсимметрии, если она верна, предсказывает существование пяти бозонов Хиггса, поэтому то, что мы обнаружили, может быть всего лишь первым из них», — сказал он.
Дело в том, что теория суперсимметрии (SUSY) предполагает, что у всех известных элементарных частиц существуют «двойники» — суперсимметричные частицы, которые родились вместе с «обычными» частицами в момент Большого взрыва. Затем суперсимметричные частицы стали намного тяжелее обычного вещества и распались, а их остатки образовали темную материю, из которой, как предполагают, почти на четверть состоит Вселенная.
Таким образом, даже если исследователи и в самом деле обнаружили бозон Хиггса — это вовсе не конец истории. Нужны новые исследования.
Дальнейшее изучение суперсимметричных частиц, как считают эксперты, возможно на ускорителях нового типа — линейных. И они уже заговорили о двух новых проектах. Во-первых, это Международный электрон-позитронный линейный коллайдер (ILC, International Linear Collider), в создании которого уже сейчас участвуют почти 300 лабораторий и университетов по всему миру.
ILC должен будет детально исследовать свойства бозона Хиггса, если последний будет в самом деле открыт с помощью ВАКа. Стоимость проекта — 10 млрд. евро.
Конкурент ILC — проект Компактного линейного коллайдера (CLIC, Compact Linear Collider). При тех же линейных размерах он обещает дать в шесть раз большую энергию частиц (3 тераэлектронвольта против 500 гигаэлектронвольт).
Пока же и сам БАК остановили на два года для модернизации с целью получения дополнительных сведений о загадочной частице. Занимаются этим в основном русские и китайские физики. После модернизации суммарную энергию столкновений протонов увеличат с нынешних 8 тераэлектровольт до 14.